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Highlights
Around the world, there are both successful and unsuccessful bioenergy project 
deployment cases. It is important to collect information about the most important cases 
and analyze them. Driving forces including local conditions, technology adaptations 
and public policies are key issues to be investigated.

A country’s tradition in cultivating selected feedstocks and technologies available for 
bioenergy production are important factors for increasing the potential for success, as 
illustrated by sugarcane ethanol in Brazil and Thailand as well as cassava ethanol in 
Thailand. On the negative side, jatropha was a disappointment in several projects and 
did not deliver the expected performance.

Adequate public policies as well as smart and sustained government support for 
bioenergy are mandatory for the success of bioenergy programs. Investors need a 
medium term view of business risks to feel confident enough to invest in these long-
term endeavors.

Africa has a huge potential in terms of land and water resources availability, but to date 
this potential has failed to materialize in a manner that will benefit the local communities. 
The causes need to be identified, studied, and compared with successful cases.

Biogas has a large potential to provide significant amounts of sustainable bioenergy, 
but its contribution to the global energy supply is insignificant. A comparison of three 
countries of similar economic and technology levels has shown that different conditions 
can lead to success in one and to failure in the other two.

Agriculture and forestry residues are perhaps the most obvious feedstocks for cellulosic 
biofuels. However, their positive impacts on soil, water, and air resources mean that 
only a portion of these materials can be harvested sustainably. Fortunately, several 
tools are already available to help determine the fraction to be left in the fields.

Woody biomass, including forestry residues, in the form of wood chips and wood pellets 
is used to generate both heat and power in Scandinavia. In some countries, these are 
becoming one of the most important energy sources and in others they have already 
been used for decades.

Municipal solid waste (MSW) is another bioenergy feedstock that is in short supply in 
northern Europe where it is used as fuel in large district heating systems. Some plants 
are retrofitted to also use woody biomass feedstock.
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Summary
Production and use of bioenergy have significantly increased in the past few years, 
motivated by the global need to reduce GHG emissions, ensure energy security, and 
strengthen rural economies. The main issues related to bioenergy are addressed 
in Chapters 3-21 of this volume. This Chapter presents several success and failure 
cases that took place in the bioenergy expansion path in several regions of the 
world, under different feedstocks, technologies, policies, and contexts. The number 
of cases that deserve to be analyzed is very large and choices had to be made 
taking into consideration the lessons learned in the process, the comparison of the 
same bioenergy alternative in different contexts that resulted in success or failure 
under different policies, the scale of the projects, and the potential for replication of 
the case in other regions of the world. The present size of the bioenergy programs 
and replicability potential of the experience have given a larger room to sugarcane 
ethanol in Brazil and Thailand (in this case using also cassava as feedstock), surplus 
power generation in sugar/ethanol mills in Brazil and Mauritius, biogas in Germany in 
contrast with California and the United Kingdom. The importance of using residues 
to take advantage of their wide availability, low cost, and low environmental impact 
is demonstrated in Scandinavia, through the efficient use of municipal solid waste for 

Figure 14.1. The potential of feedstocks for bioenergy production is spread worldwide and needs to 
be assessed and evaluated for the best alternatives. It is important to learn from available lessons 
to identify strengths and bottlenecks of each alternative, bearing in mind that local conditions and 
public policies play a significant role in the success and failure of apparently similar cases.
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heat and power by combining with other biofuels, and the economic analysis of the 
impacts on the use of palm oil production residues. The limitations for a sustainable 
collection of agricultural residues, such as corn stover, is shown in the work developed 
in the USA where a model was created to define the minimum amounts of residues that 
need to stay in the field for soil protection and fertility preservation; this methodology 
can be adapted to other agricultural residues in other regions, but it will require field 
experiments and better analysis of the local conditions. The surprising failure of most 
Jatropha curcas biodiesel projects in Africa is commented based on the experiences 
underway in Mozambique and Malawi in different scales and production models (large 
and small scales, respectively).

We discuss problems and successes of each case. It is apparent that public policies 
play a very important role in the final outcome of the bioenergy projects, for instance in 
the cases of power generation from sugarcane residues in Mauritius and Brazil, biogas 
in three apparently similar countries and sugarcane ethanol in Brazil and Thailand.

14.1 Introduction
Worldwide, the use and production of bioenergy is growing very fast, driven mostly 
by concerns about global warming and energy security, and more recently by the 
enhancement of rural development. As a result, in 2012, ethanol and biodiesel, the main 
transport biofuels, reached production volumes of 83 and 23 billion liters, respectively, 
representing approximately 3% of the global transportation fuel requirement. Similarly, 
in 2011, the production of wood pellets increased to 22 million metric tons (REN21 
2013), or some 350 PJ. At the same time, there are controversies concerning alleged 
negative impacts on food availability and prices as well as questionable statements 
regarding reduced greenhouse gas (GHG) emissions, due to the emissions resulting 
from the so called indirect land use change (iLUC).

Ethanol production is highly concentrated in the USA and Brazil, representing around 
87% of the total world production. The sugarcane case in Brazil may be widely 
replicable around the world, since sugarcane is cultivated in more than 100 countries 
with similar yields, but the success of corn ethanol in the USA will be more difficult to 
replicate because average corn yields in the world are slightly over one third those in 
the USA, making the economics highly difficult to replicate sustainably. Also, the GHG 
abatement potential of corn ethanol, according to the US Environmental Protection 
Agency (EPA 2010), is very low on average and does not meet the threshold value 
requirements of the US Renewable Fuel Standards (to qualify as an advanced biofuel) 
nor those of the EU Renewable Fuel Directive (to be counted towards the Directive 
mandated values). Besides these two successful cases, there are a few other ones, 
including sugarcane ethanol in Colombia, Thailand, Guatemala, and Malawi as well 
as biodiesel in Europe, Argentina, Colombia, USA, and Brazil. On the other hand, 
bioenergy production failures are abundant, such as the biodiesel from jatropha in 
many locations worldwide.
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Wastes and residues are highly recommended feedstocks for bioenergy production 
since they can be a source of pollution if not treated or used otherwise. They are 
generally cheap, available everywhere, and have low GHG emissions in the production 
chain (normally accounted for in the main product). There are several success stories 
worldwide including millions of small biogas facilities built in China and India, but it is 
difficult to assess the long-term results of these large-scale experiences. The use of 
forestry and wood mill residues to produce solid fuels (pellets, briquettes or in natura) 
to displace fossil fuels in household and industry heat or power generation (direct or 
in co-firing) is also growing and indicative of a trend toward becoming a major biofuel.

The strength of driving forces and existence of adequate legal and policy framework 
are normally the major reasons for success or failure, as illustrated in this chapter. 
Technology availability and use are also important factors, and although adequate 
technologies are normally available for feedstock production and processing phases, 
the question is how to ensure they will be used, especially considering the conservative 
nature of farmers in developing countries and their reluctance to give up traditional 
practices. This raises the question of scale, which is very important for the economics, 
notably in the processing phases, but there are some small-scale projects that have 
succeeded. However, those projects are highly dependent on planning for local 
conditions such as land tenure, agriculture production, and deployment capabilities. 
A combination of small/medium feedstock producers with large-scale processors can 
be made to work properly without much sophistication, as shown with sugarcane in 
Thailand, India, South Africa and other countries, but adequate technology must be 
made available and used by the feedstock producers.

This chapter summarizes lessons learned on several of the problems listed above and 
takes advantage of the authors’ knowledge of the projects. The case studies presented 
are only examples and not a comprehensive survey. Chapters 8 and 12, this volume, 
present other interesting cases of bioenergy production and use, thus supplementing 
the information in this Chapter.

14.2 Key Findings
14.2.1 The Brazilian Experience with Sugarcane Ethanol
Brazil ranks second in global ethanol production (USA is first) but is the primary sugarcane 
(Saccharum officinarum L.) and sugarcane ethanol producer. A brief summary on ethanol 
in Brazil is presented in Chapter 8, this volume, and in this chapter, only some key issues 
are described aiming at providing information about the ups and downs of the ethanol 
trajectory in displacing gasoline toward reaching a market competitiveness without 
subsidies through technology improvements, as well as adequately balanced conditions 
between cane producers and millers, and reduced demand for chemical fertilizers via 
waste use and better use of the land with crop rotation between cane cycles.
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The Role of Private Sector in Technology Development and Transfer

The main drivers for recent ethanol production policies include: substitution for 
imported oil (1975); employment and reduction of local air pollution (1980s); mitigation 
of GHG emissions (1990s), and demand for electricity (2000s). Accordingly, support 
for R&D (Macedo and Nogueira 2010) came from different agencies, and always 
with strong participation of the private sector. Private stakeholders (cane producers, 
distillery owners, equipment manufacturers, input suppliers, engineering companies 
and automakers) and government institutions (funding agencies, research institutions) 
have all contributed to technology development/implementation.

From 1980 to 1990, the primary advances included new cane varieties, milling and 
fermentation improvements, stillage recycling, biological controls and agricultural 
equipment (Macedo and Nogueira 2010); since 1990, harvest mechanization, 
logistics, industrial automation, and flex fuel cars have been the primary 
improvements. Developments contributing to these advances include transgenic 
varieties, precision agriculture, electricity production from biomass wastes, second 
generation ethanol (2G) and new co-products. Table 14.1 summarizes the key 
results of technology improvements.

Table 14.1. Overall results, from 1970 to 2010(1).

Implementation of Self Benchmarking Programs

The rapid growth of ethanol production in different regions and with different constraints 
called for well planned and reliable data acquisition and diffusion, to support technology 
development and implementation. Benchmarking programs for cane production and 
processing started after 1991 at the Sugarcane Technology Center (CTC) (CTC 2013b). 
This system has now 180 mills, and its database includes hundreds of parameters. A 
varietal census, covering 6.5 million ha of cane and 300 mills, completes the system 
indicating the commercial use of sugarcane varieties in the different cane producing 
areas in Brazil. Data acquisition is on line and analytical procedures are established 
by the CTC (CTC 2007). There are also checks for consistency with results published 
monthly / yearly, for the associated mills (regional and global averages, time evolution, 
dispersion). These programs have been very important for technology development/
diffusion throughout the country.

Productivity 
t cane / ha

TRS in cane  
kg TRS/t cane (3)

Industrial 
Conversion %

Ethanol 
t TRS/ha

Cost R$/L 
ethanol (2)

1970 49 87 82 3.5 3.0

2010 85 145 87 10.7 1.0

(1) Data from CTC and UNICA (Brazilian Sugarcane Industry Association), presented in (CTC 2013a)  
(2) Constant R$, basis Jan 2011 
(3) TRS: Total Recoverable Sugars
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The Cane Payment System

Brazil has approximately 70 thousand independent cane producers and 440 processing 
industries. The sugarcane industry has specific conditions (high transportation/
production cost; need for fast processing after harvest) that lead to a strong 
interdependency among cane producers and the processing industry; worldwide, 
different local policies and market organizations are used for price formation models.

After a period during which prices were set by the Government, the private sector in São 
Paulo established the most successful price formation model in Brazilian agriculture 
in 1998: a council (Consecana) of cane producers and sugar millers who developed 
the concept that actual revenues be distributed among the two sectors according to 
respective costs and cane quality (Machado Neto et al. 2011).

The Consecana model in São Paulo includes 19,400 suppliers producing 130 million t 
cane (UNICA 2013). Rules, operations and evolution can be consulted (CONSECANA 
2006). Similar models are extended to most producing regions.

Recycling Vinasse through Fertigation

Environmental legislation during the last 30 years has determined site specific application 
guidelines for vinasse (m3/ha), eliminating soil/water contamination (CETESB 2007) and 
regulating vinasse storage and distribution (impermeable tanks and channels; in some 
cases, pipelines). Engineering solutions starting in 1978 (Elia Neto 2007; Souza 2005) 
led to efficient recycling of stillage (K as fertilizer and water); and also included filter 
cake and boiler ashes. Vinasse became an important, cost-effective nutrient source, 
potentially providing 2.45 kg/t in K2O savings (Donzelli 2005). However, two decades of 
developments on stillage bio-digestion, including commercial systems and stillage drying 
for mineral fertilizer formulations, still lack proven economic results.

Use of Idle Land between Harvest and Planting of New Cane

Sugarcane is planted once and harvested after 12 to 18 months of growth depending 
on when the crop is planted. After the first harvest, the cane re-grows as a ratoon 
crop that, on average under Brazilian conditions, can be harvested four more times, 
before the cycle is terminated and the cane replanted. With the 18-month cane growth 
period, there are a few months between the last harvest and the planting of the new 
cycle. During this period, it is normal to rotate with nitrogen fixing or other crops 
such as soybean [Glycine max (L.) Merr.], dry beans [Phaseolus vulgaris], peanuts 
(Arachis hypogaea), sunflower (Helianthus annuus) and hemp (Crotalaria juncea) 
(Penariol and Segato 2007). In the Center-South region of Brazil, planting of rotation 
crops takes place from September to December and harvesting is from January to 
March. The green material is incorporated in the soil to increase organic matter and 
nitrogen contents. This procedure has shown significant increases in yields and 
economic gains from the sale of crop products (soybeans, beans, peanuts, sunflower 
seeds) and from renting the land to independent growers (Alleoni and Beauclair 
1995; Dinardo-Miranda and Gil 2005).
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Present Problems

The Brazilian sugarcane sector was growing at a rate of approximately 10% per year 
between 2001 and 2008 (UNICA 2012a), but during the 2008 financial crisis, the sector 
found itself highly indebted and unable to obtain money from the banks to finance 
operational costs. Consequently, mills had to cut expenses. They did so by reducing 
the application of fertilizers and herbicides, postponing sugarcane field renewals, and 
laying off personnel. These actions had an immediate and lasting impact on cane 
yield and quality. Furthermore, the fast increase in mechanized harvest to comply with 
regulations phasing out cane burning, as well as weather problems in 2009 to 2011 
(excess rain in 2009, drought in 2010 and frost and cane flowering in 2011), and poor 
agriculture management (use of low quality seeds in planting – old cane with diseases 
and pests) also affected the crops (Sanguino 2013). The compound outcome was a 
reduction of cane yield from the 20 year historical average of 84 t of cane/ha to 69 t 
of cane/ha in the 2011/2012 season (UNICA 2012b). Other production costs, such as 
the price of renting land, chemical inputs and labor, however, sharply increased mainly 
because of higher oil prices and shortage of qualified labor (UNICA 2012a).

Fortunately, the sector identified the problems associated with past actions and 
contexts, and started correcting them by accelerating cane field renewal, taking 
precaution to plant better quality seeds, and reducing the negative impacts of 
mechanization (soil compaction and ratoon damage). The government also helped 
by making money available to finance the cane planting activities. With this, the yield 
is slowly increasing, reaching 72 ton/ha in 2012 and 78 ton/ha in 2013, in the Center-
South region (CONAB 2014). On the political side, the situation remains unresolved 
since the central issue is the government’s policy to maintain gasoline price for the 
domestic market below the international prices, thus reducing competitiveness of 
ethanol at filling stations.

Conclusions: Brazil has a long history of bioenergy production. Public/Private sector 
cooperation was essential for identifying problems associated with past actions and 
for developing effective strategies to correct them. A benchmark system based on well 
planned and reliable data acquisition and diffusion is crucial for supporting biofuels 
technology development and transfer. Recycling residues decreased the demand for 
chemical fertilizer and the planting of crops in rotation with sugarcane at the end of the 
five harvest cycle added economic viability to sugarcane ethanol. Finally, a payment 
system based on cane quality and fair division of profits between growers and millers 
is the reason behind the socioeconomic sustainability of the system.

14.2.2 Surplus Power Generation in Sugar/
Ethanol Mills: Cases in Brazil and Mauritius
Surplus power generation is becoming a trend in several sugarcane producing 
countries, especially in Brazil, India, Mauritius, and Reunion. However, the Brazilian 
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and Mauritian experiences differ in realization of the potential, including what makes 
these cases worth exploring.

Bioelectricity from Sugarcane in Brazil: Evolution and Current Situation

Currently, hydroelectricity and natural gas are Brazil’s primary sources of electricity, 
accounting for almost 80% of installed capacity (Figure 14.2). Bagasse and straw from 
sugarcane are in third place, representing 7% of Brazil’s installed electric energy matrix 
(ANEEL 2014).

Bagasse and straw are the main sources of biomass for bioelectricity, accounting for 
81.5% of Brazil’s biomass-based installed capacity in 2013. The sugarcane sector 
with its 9,156 MW, in addition to being self-sufficient in steam and electricity for 
manufacturing sugar and ethanol, has been able to generate surpluses of bioelectricity 
to the grid since the middle 1980s.

In 2012, bioelectricity from sugarcane was responsible for almost 3% of the total 
consumption of electricity in Brazil. However, there is a potential to reach 18% by 
2020/21 (EPE 2013). Nevertheless, the sugarcane and bioelectricity sectors need 
long-term policies to stimulate investment.

One of the main barriers to cogeneration projects is connection to the National Grid. 
In Brazil, the connection cost has to be paid in full by the bioelectricity supplier and, 
in some cases, it represents 30% of the total project investment. In order to reach the 
potential, the country needs to establish a free or co-shared cost policy for building the 
bioelectricity transmission system (Souza 2013).

Figure 14.2. Brazil installed capacity by source, March 2014 (MW). Source: ANEEL (2014).
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According to Souza (2012), another significant barrier is the commercialization in 
regulated auctions, promoted by the federal government.

For example, on March 15, 2004, the Law n. 10,848 (New Model of Electric Sector), 
which specifically focuses on altering the trading environment, was passed. Its main 
focus is the creation of two distinct energy trading environments in which a generator 
can act: (1) an environment for contracting energy aimed at distribution companies, 
called RCE – Regulated Contracting Environment, and operating from energy auctions 
as the pool for contracting; and (2) a market with more flexible commercialization rules, 
for producers, free consumers, and energy commercialization enterprises, called FCE 
- Free Contracting Environment (Souza 2012).

Under RCE, distribution companies purchase electric energy for their markets through 
public auctions regulated by ANEEL (National Energy Agency - in charge of regulating 
the sector) and operated by the Electric Energy Commercialization Chamber (CCEE), 
under the procedures of the Ministry of Mines and Energy (MME) (Souza 2012).

The energy needs, estimated by distribution companies for a horizon of five years, 
are analyzed by the MME. This represents the demand to be contracted through 
auctions, characterized as reserved auctions of purchase. On the supply side, there 
are companies with existing mills and those aiming to build new mills, even if they 
still do not have concession contracts or authorization to do so. These auctions are 
called “Auctions of Purchase New Energy and Existing Energy”. According to the new 
electric sector model, new energy auctions should take place five, three and one year 
before the effective supply of electric energy to contracting distributors. Therefore, 
these auctions are called A-5, A-3 and A-1 (regular auctions), while other non-regular 
auctions are for reserve energy and alternative sources (Souza 2012).

The use of reverse auctions to improve the renewables industry is frequent in Latin 
American countries, mostly in Brazil, Chile, Peru, Colombia, and Panama (Maurer 
and Barroso 2011). In Brazil, these auctions are the primary long-term method for 
selling bioelectricity.

In the Brazilian power sector, reverse auctions have resulted in significantly lower 
prices, which represents one aspect of success for the consumer (Table 14.2), but this 
situation has resulted in contracting fewer types or sources of generation and limiting 
contracts to those whose structural and situational aspects are favored (wind power 
in particular). Despite the appeal of low tariffs, achieved through competitive auctions, 
in the long run, this policy should be adjusted to avoid restrictions on development of 
other renewable sources and their associated industries (Souza 2013).

The generic auctions in the Regulated Environment, without discrimination of the 
location of enterprises or type of power generation, has limited the ability of the 
Federal Government to compose the energy matrix according to the needs and 
potential of each region and source of generation, bringing costs and more losses in 
power transmission and adding possible variables of uncertainty into the management 
of energy supply (Souza 2012).
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Regulated auctions should take the potential of each source or region into account. 
For sugarcane biomass, the potential is mainly in the Center-South region of Brazil, 
which also happens to be the number-one energy consuming region in the country. 
It would be an encouragement if the Brazilian government changed its strategy of 
contracting power via “generic” auctions that blend sources which are unmatched 
even by the intrinsic qualities of each one (Souza 2011). Furthermore, it’s necessary 
to refine the pricing model of regulated auctions to incorporate the positive and 
negative impacts (externalities) not only of biomass but of other sources as well, 
which would certainly promote the development of bioelectricity in the Brazilian 
electric matrix.

Table 14.2. Price and volume of bioelectricity contracted in regulated contracting environment, 
2005-2013 (US$/MWh).

Auction date Contracted energy (MWh/year) Current price (US$/MWh)*

Dec-05 849,720 76.44

Jun-06 508,080 81.86

Oct-06 534,360 82.96

Jun-07 1,007,400 81.76

Aug-08 4,756,680 85.81

Sep-08 306,600 79.58

Jul-09** 87,600 76.24

Nov-09 8,760 41.79

Aug-10 1,669,656 71.37

Dec-10 8,760 53.58

Aug-11 713,064 48.04

Dec-11 183,960 45.78

Aug-13 1,170,336 56.65

Total 11,804,976

Source: Souza (2013).* US dollar exchange rate of August 31, 2013. ** Since 2009, wind power is presenting 
significant competitiveness in the reverse auctions leading to a decrease in the average prices	
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Bio Electricity from Sugarcane in Mauritius: Progress and Prospects

Mauritius was the first country to export electricity from a sugar factory to the grid when in 
1957, the St. Antoine Sugar Factory in the North exported some 0.28 GWh to the Central 
Electricity Board (CEB). This was the beginning of a fantastic opportunity for the industry. 
Since then, the amount of electricity cogenerated by sugar factories from bagasse has 
been in constant progression. In this evolution there are three distinct phases, namely:

Intermittent, when electricity was exported to the grid from 17 out of 21 sugar factories 
as available surplus electricity after meeting sugarcane processing requirements. 

Continuous, when with the acquisition of appropriate equipment and elementary 
energy saving devices in 1977, a given amount of electricity to be supplied to the grid 
was agreed upon. For example, the Medine Sugar Factory in the West with an installed 
capacity of 10 MW, guaranteed to supply 6 MW to the grid. 

Firm, when in 1982 with the acquisition of medium pressure boilers of 44 bars and 
475oC steam, the FUEL factory in the East supplied electricity throughout the year, 
from bagasse during the crop period and from coal during the inter-crop period.

The establishment of the Independent Power Producers (IPP) and the construction 
of bagasse-fired power plants not necessarily linked to sugar factories in the form of 
independent power companies further consolidated this firm approach. A significant 
step forward was the development of the Centrale Thermique de Belle Vue (CTBV) in 
the North of Mauritius with two high pressure boilers of 82 bars, with steam at 525oC, 
and an installed capacity of 2 x 35 MW. In 2007, the Centrale Thermique de Savannah 
(CTSAV) in the South (now Omnicane Energy Operations Limited, La Baraque) was 
established with an installed capacity of 2 x 45 MW using two high pressure boilers with 
steam temperature similar to those at CTBV.

The success behind cogeneration of electricity from bagasse in Mauritius and selling 
to the grid is a result of a continuous and sustained Competitiveness Improvement 
Program initiated in 1985. The program comprises five phases as detailed below. 
The Sugar Sector Action Plan (1985), the Sugar Industry Efficiency Act (1988), the 
Bagasse Energy Development Programme (1991), the Blueprint on Centralization of 
Sugar Factories (1997), and the Multi-Annual Adaptation Strategy Plan (2006) are 
of particular importance. These programs which were supported by law, allowed the 
industry to enhance its competitiveness by increasing its revenues from diversification 
of its purely sugar activities. The power purchase agreements between the IPPs and 
the CEB were instrumental to the success of large-scale electricity production from 
bagasse during the cropping season and coal during the inter-crop period. In 2012, 
bagasse supplied 16% of the electricity needs of Mauritius.

In 2002 the share of electricity from bagasse amounted to 340 out of 2484 GWh 
produced in Mauritius, i.e. 13.7%. The growth of this source of electricity is shown 
in Figure 14.3,. It shows that there was a major growth of the coal share due to its 
successful combination with bagasse to generate electricity year round.
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Figure 14.3. Electricity production by source in Mauritius.

At the end of 2013, the centralization process was finally completed with the closure 
of the sugar mill at Beau Champ in the east of the island, leaving only four factories in 
operation in Mauritius (one in each geographical section of the island) and with all the 
bagasse used in high pressure boilers, such as in CTBV and CTSAV, some 550 GWh 
will be produced from a sugarcane output of approximately 4 M tons. More details are 
provided by Deepchand (2008) and Kong Win Chang et al. (2001).

National Competitiveness Improvement Programs in Mauritius:

1985 Sugar Sector Action Plan – Restructuration, Modernization Bagasse Energy Policy 
evoked – Tax free revenue, Export duty rebate on bagasse saving and capital allowance 
on bagasse energy investment

1988 Sugar Industry Efficiency Act – System of performance linked export duty rebate to 
improve efficiency in farms, mills and power plants. Tax incentives to produce special 
sugar, save energy and optimize use of bagasse

1991 Bagasse Energy Development Program – Modernization, technology development, 
pricing policies such as tax rebate on electricity produced from bagasse and refund of 
export duty for the installation of energy efficient equipment

1997 Blue Print on Centralization – Facilitate closure of small inefficient factories, linking 
closure with optimal energy use from bagasse, while offering the right compensation 
package to leaving employees

2006 Multi-Annual Adaptation Strategy Plan – Drastic restructuration from 11 mills to 4 
efficient ones, right-sizing of labor, intense modernization, construction of power plants, 
distillery and refineries coupled with aggressive marketing
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Conclusions: The Brazilian story in surplus power generation had all the ingredients 
to be successful due to the sector’s expansion and building new and large scale mills 
with high pressure boilers; however the present rules of power contracting at auctions 
and the lack of government action to solve the high cost of connection problems is 
jeopardizing the opportunity to develop the huge potential available. The success behind 
cogeneration of electricity from bagasse in Mauritius and selling to the grid is the result 
of continuous and sustained Competitiveness Improvement Programs initiated in 1985 
with full support from the government and private sector. The track record of Mauritius 
in terms of bioelectricity production is laudable. However, with the decrease of the area 
under sugarcane plantation the participation of bagasse in the national energy mix tends 
to decrease. To maintain or increase the bioelectricity production, the sugarcane sector 
is looking into the recovery of sugarcane straw (normally called trash), the use of high 
fiber cane to increase bagasse yield and, ultimately, introducing the biomass gasification/
combined cycle (BIG/CC) technology in the mills to replace the conventional steam cycle.

14.2.3 The African Experience
Despite extensive interest in biofuels, to date there has been very limited production 
of biofuels in Africa with Malawi being the notable exception because their ethanol 
has been blended with petroleum since 1982 (Batidizirai and Johnson 2012). At 
the global level, the total contribution of biofuels from Africa is trivial (IEA 2011), 
this despite the continent’s vast areas of land that are climatically suited for biofuel 
feedstock production (Smeets et al. 2007; Watson 2010). A large number of African 
countries have recently developed biofuel policies that envision a contribution of 
biofuels to the national energy mix (Mitchell 2011). This is seen as being beneficial 
as a large proportion of foreign exchange is spent on petroleum imports, and in 
addition the biofuel can contribute to rural upliftment (Diaz-Chavez 2010 and 2013). 
Biodiesel from Jatropha curcas is where there has been the largest investment in 
biofuels, with GEXSI (2008) estimating over 94 projects and 119 000 hectares being 
allocated to jatropha in 2008. However, Locke and Henley (2013) found that only 3.6, 
12.9 and 3.2 percent of authorized land was actually planted to a biodiesel feedstock 
(prominently as jatropha) in Mozambique, Zambia and Tanzania, respectively. 
Several studies reported large-scale collapse of both small- and large-scale jatropha 
projects (Gasparatos et al. 2012, Locke and Henley 2013; von Maltitz et al. 2012), 
and none have been found to document extensive oil production from any project or 
country. This outcome was despite the many jatropha projects established in the mid 
2000s. Extensive interest has also been shown for sugarcane based biofuels, but 
progress to date has been slow, and many proposed projects have stalled in their 
implementation. Ethiopia, Sierra Leone, Zambia, Zimbabwe and Mozambique are 
all currently developing plans for ethanol production (Batidizirai and Johnson 2012).

Therefore, Africa’s rich history of successes and failures in the implementation of bioenergy 
projects deserve to be told and discussed. Two interesting examples are included here 
promoting the same feedstock (jatropha), but with different production models.
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Jatropha Projects in Southern Africa

Southern Africa was identified by many investors as an ideal location for jatropha 
based biofuel development. At least 52 projects were initiated in the region (GEXSI 
2008), but most failed and have been abandoned by their investors (Gasparatos et al. 
2012). There are multiple reasons, but jatropha’s low yields and higher maintenance 
costs compared to investors’ expectations were a major factor.

Jatropha was promoted for its tolerance to dryland conditions and potential ability to grow 
on wasteland. However, experience has shown these early assumptions were flawed. 
More recent data suggests that although the tree will grow in low rainfall areas, good yields 
will require an annual precipitation of over 800 mm. However, the tree also responds poorly 
to waterlogged soils (Trabucco et al. 2010) so rainfall distribution is also important.

As a result, investors tended to plant jatropha on good soils rather than on wastelands. 
Furthermore, management costs for jatropha were also found to be relatively high, 
with seed picking and dehusking in particular being very labor intensive (von Maltitz 
and Setzkorn 2012). Despite these limitations, a few projects continue to expand and 
their developers are cautiously optimistic regarding long term successes (von Maltitz 
et al. 2014). Two projects with contrasting management models were visited in March 
2013: one large-scale plantation project in Mozambique and a small-scale hedgerow 
based project in Malawi (von Maltitz 2014; von Maltitz et al. 2014). Key features of 
these two projects are summarized in Table 14.3. Despite the fundamental differences 
in management models of these two projects, both show signs of potential long-term 
success. Clearly, jatropha is not the high value, low input crop that had initially attracted 
investors (Gasparatos et al. 2012). However, where expectations are more modest and 
input costs are low, there seems to be a potential for long-term economic success. In 
both projects, economics are based on yields of three tons per hectare or less. The 
plantation type project would seem well suited to areas of relative land abundance, 
whilst the hedgerow project is better suited to areas with a high farm density. The 
intense poverty in both areas is another reason why a relatively low valued crop 
may succeed. Though the two projects use very different production pathways, both, 
if successful, can have significant positive impact on fuel security in both countries. 
Long-term success is, however, not guaranteed. A lot will depend on jatropha’s ability 
to actually deliver even the more modest yield on which these projects are based. 
Something that only time will tell. Also, the financial viability of the projects under real 
world management is still unknown.
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Table 14.3. A comparison of two jatropha projects, the Malawi BERL project and the Mozambique 
Niqel project. (based on von Maltitz 2014; von Maltitz et al. 2014).

BERL Malawi Niqel Mozambique

Project type Small growers planting jatropha as 
hedgerows. Trees managed by the 
farmer’s household

Large-scale commercial block 
plantation. Trees managed by paid 
labor

Project extent 90 field extension staff employed 
to train and establish over 6 million 
trees with 30,000 smallholders. 
BERL ceased extension of planting 
activities in 2013. Now waiting for 
the 6 million trees to mature

2,000 ha planted of a proposed 5,500 
ha at Grudja. 250 permanent staff 
plus casual labor for harvesting

Current 
demography 
and smallholder 
farming practices 

High population density. Wall to 
wall permanent small farms of 0.1 
to 2.5 ha (1.7 mean). All farmers 
grow maize, with a wide mix of 
other crops. Mean income from 
agricultural sales US$ 38, with most 
households having 4.1 ± 2.7 (SD) 
months of food shortage per year

Low population density. Less 
permanent farms with slash and burn 
opening of new fields. Only 11.5 % 
of total land under cropland, the rest 
woodland. Farms range from 0.5 to 
14 ha (3.97 mean), with households 
reporting a median income from 
agricultural sales of US$83. Most 
households having 5.9 ± 4.5 (SD) 
months of food shortage per year 

Role of investor Providing extension support, 
purchaser of seeds and oil 
extraction

Growing trees, harvesting and 
extracting oil

Processing BEREL has an oil extraction plant 
based in Lilongwe. Seeds are 
purchased from farmers by BERL 
then transported to Lilongwe for 
extraction. BERL will sell as pure 
plant oil. First season oil extracted, 
but not yet sold

Niqel intends to extract oil at the 
plantation, extraction plant due to be 
installed in 2014. Niqel will sell as 
pure plant oil

At the time of the study, no oil yet 
extracted

Proposed 
destination of 
final product

Oil to be directly blended into 
national diesel fuel to a maximum of 
9%. To date this has not happened 
due to policy delays around the 
acceptance of the standard

Oil to be exported to Maputo – will 
probably undergo transestification 
for blending. Niqel aims to produce 
25% of total Mozambique bio diesel 
needed to achieve 3% blend with 
diesel

Harvest, yield to 
date and hoped 
for yield. 

2012/13 first harvest (Jan to Mar) 
yield ranges hugely, median 0.07 
kg/tree, but with 5 farmers reporting 
over 0.4 kg/tree. BEREL target is 
1.5 kg/tree per year at maturity 
which is equivalent to 1.9 t/ha (at 
1250 trees/ha)

2012/13 first formal harvest. Yield 
increased from 0.16 t/ha in the first 
year to 0.4 t/ha from two year old 
trees. Target is 3 t/ha at maturity

»»  
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BERL Malawi Niqel Mozambique

Proportion 
of farm land 
converted to 
jatropha

A 500 tree jatropha hedge takes up 
7% of the average farm at present. 
This might increase slightly as trees 
grow

Approximately 6% of the total 
village’s area is converted to jatropha, 
reducing the potential land area per 
farmer from an estimated 27 ha to 25 
ha. This is far more than the average 
4ha used per farmer, and nearly all 
farmers said they had sufficient land 

Impact on food 
security

At present seems minimal though 
some cropland land is lost to 
jatropha trees and there is possible 
competitive interaction between 
trees and crops

The plantation does not limit 
land for home food production           
Plantation policy limits labor to one 
family member per household, and 
respondents say they can maintain 
their crop production

Impacts on 
woodlands 
and woodland 
products 

No or minimal impact Will be 5500 ha of woodland lost, 
however, given the ratio of woodland 
to households the impact of this 
loss will be minimal in terms of the 
provisioning services it provides

Infrastructure 
benefits

BERL has established an oil 
pressing plant in Lilongwe

Niqel has established 200km of all-
weather road. This allows community 
members from surrounding villages 
to access the tar road during the wet 
season – something they could not do 
in the past. They are also building a 
new primary school and have created 
small dams for community water 
provision

Conclusions: Africa has seen several failures and a few successes in the implementation 
of biofuel projects. The two projects presented here show some interesting lessons to 
be learned: Jatropha has demonstrated to be a risky feedstock and not as successful as 
anticipated because of erroneous initial assumptions regarding crop growth, development 
and yield potential. It is important to follow and evaluate the installation and operation of 
such projects to identify the main causes of failure and success and the results properly 
disseminated, since there is a very broad worldwide interest in this crop.

14.2.4 The Asia Experience
Asia is showing a fast growth in energy demand and bioenergy may or may not play an 
important role depending on results of the first bioenergy projects and the corresponding 
experiences and lessons learned. Thailand as the fourth largest sugarcane producer and 
second largest cassava producer in the World, has launched its ethanol program based 
on these two feedstocks and is proceeding successfully creating a production system that 
can be used as reference by other Asian countries with similar conditions. The growing 
production of oil palm, especially in Malaysia and Indonesia, for food, chemicals and 

»»  
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biodiesel is creating a vast source of residual biomass that can be used to generate modern 
forms of energy such as electricity and second generation biofuels. As is the normal case in 
the use of residues for bioenergy, there is a question of logistics to recover, transport, store 
and process the feedstock and also the decision of the scale to be used in the processing. 
Malaysia is used here as an example of how the whole value chain of palm oil can be 
optimized by appropriately using the residues for energy products, in an adequate scale.

Thailand’s Experience in Bioethanol Promotion

In 2012, bioethanol production in Thailand reached half a billion liters (Figure 14.4), 
thanks to a strengthened legal and policy framework over the past decade. A major 
driver is the desire to make biofuels a significant substitute to imported petroleum in the 
transport sector (Silalertruska and Gheewala 2010; Bell et al. 2011), which accounts for 
36% of Thailand’s total energy use. Other factors include the potential to reduce GHG 
emissions (Table 14.4) as well as the expected social benefits of biofuels, such as rural 
employment (Gheewala, 2012; Silalertruska et al. 2012) (Table 14.5).

The impetus for biofuels promotion began in 2000 when ethanol was designated a 
commercial fuel, plants to produce fuel ethanol were legalized, and a National Ethanol 
Committee was set up (Morgera et al. 2009; Jenvanitpanjakul and Tabmanie 2008). 
The initial goal, set in 2003, was 1 ML/d (million liter per day) consumption by 2006, 
which was later increased to 2.4 ML/d by 2011. The present target in the Alternative 
Energy Development Plan is 9 ML/d by 2021 (DEDE 2012a).

Fuel specifications were announced, first for E10 gasohol with 10% ethanol blended 
with unleaded gasoline octane 91 (or ULG91) and unleaded gasoline octane 95 (or 
ULG95), in 2006, then for E20 and E85 (based on unleaded gasoline octane 95 or 
ULG95) in 2008. Ethanol blending is not mandatory, but ULG91 was phased out in 
January 2013, leaving ULG95 as the sole unblended gasoline. The main incentive for 
ethanol producers and consumers is price: excise tax is currently being exempted from 
the ethanol component of gasohol and lower contribution rates to the Oil Fund from 
gasohol sales. Incentive packages to stimulate investment into the ethanol industry are 
also in place. In addition, excise tax rates are lower for cars with engines compatible 
with E20 or higher blends (Morgera et al. 2009).

Thai ethanol is produced mainly from molasses (62%) and cassava (38%). Because of 
the farmers-millers profit sharing requirement under the Cane and Sugar Act, millers 
are implicitly discouraged from producing cane juice-ethanol and adopting the more 
efficient, integrated production models practiced in Brazil. Compared to molasses-
ethanol, the cost of cassava-ethanol is more expensive and more vulnerable to 
feedstock cost fluctuations (Morgera et al. 2009; Damen 2010). The problem of 
surplus ethanol production has partly been solved since pulling ULG91 off the market, 
with production surging to 2.3 ML/d on average in the first half of 2013 (DEDE 2013). 
Since the liberalization of export regulations, ethanol export has reached 170 ML 
in 2012 (Sikhom 2012). The planned reduction of excise tax rate for flexible fuel 
vehicles (FFVs) in 2016 will further raise demand for ethanol (Wongtareua 2013). 



508

chapter 14 
Case Studies

Bioenergy & Sustainability

Fortunately, competition for land and water resulting from increased crop production 
can be avoided by improving sugarcane and cassava yields and by installing irrigation 
systems where feasible (Morgera et al. 2009; Damen 2010); adequate policies will 
be required.

Greenhouse gas (GHG) emissions reduction resulting from the substitution of 
gasoline by ethanol is estimated to be substantial (Table 14.4) especially in the case 
of sugarcane as feedstock.

Table 14.4. Life cycle GHG performance of bioethanol from molasses and cassava in Thailand 
(Source: Gheewala 2012).

Feedstock Estimated GHG emissions 
(kgCO2eq/liter biofuel)

Net avoided GHG emissions 
compared to gasoline****

Molasses* 0.68 64%

Cassava/dried chip** 0.96 49%

Sugarcane juice*** 0.5 72%

* Average of three ethanol plants, Allocation Factor (AF) of sugar:molasses = 4:1

**Average values from various studies; plants that use biomass as fuel may emit only 0.77 kgCO2eq/liter (TEI 2007)

*** Sugarcane in Brazil

**** Estimation based on energy content of ethanol = 21.2 MJ/L, and of gasoline = 31.4 MJ/L

Another important issue related to biofuels production, especially in developing countries 
such as Thailand, is the jobs created by the whole value chain in terms of direct and indirect 
employment. The benefits in this area from the Thai ethanol program were simulated for 
2022 using the target of 9 ml/d in that year and are summarized in Table 14.5.

Table 14.5. Projections of employment caused by ethanol target of 9 ml/d in year 2022 (Source: 
Silalertruksa et al. 2012).

Feedstock Employment coefficients for high yield 
assumption (person-years per million liters of 
ethanol)

Employment caused by 
ethanol target in 2020 
(person-years)

Direct Indirect Total Range of 4 scenarios*

Molasses 10 46 56 35k – 70k

Cassava 36 40 76 180k – 277k

Sugarcane 47 32 79 23k – 35k

Total 238k – 382k

* The scenarios depend on factors such as assumptions on crop production yield, agricultural practices, 
mechanization, etc.; figures rounded off from the reference
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Conclusions: Introduced in 2000, ethanol production in Thailand has now developed 
into a relatively mature industry, thanks to a strong legal and policy framework that 
includes blending standards and mandates, and favorable price mechanisms. The 
market for ethanol, produced mainly from molasses and cassava thus far, can expand 
considerably with incentives for flex fuel vehicles (FFVs). Ethanol supply can also grow 
with crop yield improvements and conducive framework conditions for cane juice-
ethanol production. However for the latter it will be necessary to introduce relevant 
modifications in the cane payment system to create conditions to implement the joint 
production of ethanol and sugar model used in Brazil.

Palm in Malaysia: Combined Effects of Scale on 
Biomass Logistics and Conversion Costs

The vegetable oil sector (palm, soy, sunflower, and others) is producing roughly 
300 million tons per year of oils, primarily for food and consumer products, but 
hardly for biofuels (1-2% of total volume). It is not expected that much more oils 
will be used for biofuels given the other demands. But oil producing plants like oil 
palm produce one order of magnitude more lignocellulosic residues – for instance 
in the case of oil palm, these are the fronds (leaves), trunks, empty fruit bunches, 
and the liquid wastewater effluent of the oil mill, that are today mostly wasted. 
This excess biomass could provide a substantial feedstock for renewable biobased 
chemicals, fuels and energy. Using them also considerably reduces the emissions 
of the sector. To use excess biomass, technologies such as fermentation, Fischer-
Tropsch and other may be employed.

Figure 14.4. Ethanol production trend in Thailand. (Source: DEDE Energy Situation Reports, 
2013, 2012b, and 2011).
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Biorefineries for the conversion of biomass into one or several products are often 
conceptualized as large, integrated facilities that benefit from economies of scale and/or 
cover the demand for a large market. Bioethanol, power, and sugar/starch from sugarcane 
in Brazil or corn in the USA or France give clear examples of large-scale operations. As 
the (relative) capital cost increases with the complexity of biomass processing technology, 
the optimum scale is larger when economies of scale have larger impacts (Searcy and 
Flynn 2009). For instance, Wright and Brown (2007) report optimum scales that increase 
depending on the complexity of the conversion process, e.g. pyrolysis bio-oil has an 
optimum at a biomass annual processing capacity of 1.08 million tons versus cellulosic 
bioethanol at 4.57 and FT (Fischer-Tropsch) diesel at 7.69 million tons.

However, as economies of scale for conversion and logistics have opposing effects 
on production cost, the optimum will be based on both factors. For cases of seemingly 
abundant biomass availability, especially in Asia such as palm biomass in Malaysia 
(Palmeros et al. 2013) and Indonesia and specific biomass uses in other situations such 
as bioenergy in India (Pantaleo and Shah 2013), the scalability of biomass conversion 
chain is substantially limited by economics and technology for transportation as well 
as market structure. An often overlooked effect in logistical costs is tortuosity, which is 
a measure for the degree of development of local infrastructures versus a simplified 
straight-line model. Tortuosity can be about 1.2 for developed agriculture regions where 
roads are laid out in rectangular grids or as great as 3.0 for less developed regions. 
Tortuosity leads to a proportional increase in logistical costs (ranging from 20% to 
200% from developed to less developed situations). In practice, average transportation 
costs are further impacted by seasonal influence on softness of soils, degree of actual 
coverage with biomass, the non-circular nature of actual plantations, remoteness etc. 
In those case studies, the biomass supply and value chains including operational and 
investment models have to be re-designed.

Palmeros et al. (2013) provide a detailed case study for oil palm biomass use in 
Malaysia, which is an example that demonstrates the general case. Palm biomass 
(residues) is currently generated at mills as a result of oil extraction from fresh fruit 
bunches (FFB), namely empty fruit bunch (EFB), fibers, and shells. Additionally, oil 
palm fronds (OPF) and trunks (OPT) become available at the plantations, and the 
case is to use both streams. A simplified (approximate) biorefinery model as well as a 
more detailed plant design have been considered in two cases, namely (1) biomass 
derived from milling operations (M), and (2) biomass derived from plantation and milling 
operations (M+P). The scale effect is introduced by centralized processing of M or M+P 
biomass to fermentable sugars of n mills, benchmarked against current technology and 
economic numbers. Generation of heat and power, and treatment of wastewater from 
the biomass conversion and other palm oil mill operations, are taken into account to 
calculate Total Production Cost (TPC in $/metric ton) in the below figure 14.5 (n ranges 
from 1-20). TPC decreases in both cases with increased production scale (effect of 
relative CAPEX-reduction), and then increases due to the logistical costs. Increased 
learning effects in production technology (Van den Wall Bake et al. 2009) will even 
lower conversion costs and push the minimum to (single) mill integrated processing.
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Further profitability analyses for palm biorefineries were performed at two different scales 
of central biomass processing, derived from three and ten mills and plantation as 15 year 

Figure 14.5. Impacts of the mill scale on the Total Production Costs (TPC) of lignocellulosic palm 
biomass to sugars (Palmeros et al. 2013).

Figure 14.6. Cumulative and discounted cash flows of a single biorefinery compared with multiple 
biorefinery alternatives (Palmeros et al. 2013).                
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projects, Evaluation was done in terms of NPV (Net Present Value), with actual operation 
starting in year 3 after the start of the project. The two situations were scaled to the 
same feedstock processing capacity, i.e. a single biorefinery processing biomass from 10 
mills and plantations (10M) versus a larger number (10/3) of biorefineries processing the 
same amount of feedstock (3Ms). The cumulative discounted cash flows are presented 
in Figure 14.6. The economies of scale have a positive impact on the payback time for the 
investment. As a result, the payback time of the 10M case is shorter than for the multiple 
mill 3Ms case. However, due to the differences in total production cost (Figure 14.6), 
multiple smaller biorefineries are more profitable than a single biorefinery processing the 
same amount of feedstock over the whole project lifetime.

Conclusion: The experience with this case study directs towards small scale, 
single-mill-integrated processing of biomass, for palm and comparable cases with 
high logistic costs. This is in opposition to the current tendency in (increasing scale) 
technology development. One important conclusion is that the case of optimum scale 
is highly dependent on the local conditions and contexts. Developing regions such 
as Southern Africa, Southeast Asia and others may have similar situations as the 
Malaysia oil palm biomass case.

14.2.5 Biofuels from Agricultural Residues: 
Assessing Sustainability in the USA Case
The production of bioenergy in developed countries often encounters different problems 
than in tropical countries because of geographic diversity and well-developed industries 
for multiple feedstock sources (Braun et al. 2010). The use of wastes, on the other hand, 
can benefit from a better organized collection and transport infrastructure and good 
technology available for conversion (Brick 2011). Furthermore, because of regulations 
regarding waste handling and disposal, using those materials for bioenergy production 
can reduce waste handling costs and thus improve the economic competitiveness 
of using wastes as bioenergy feedstock. The developed countries also have several 
functional technologies for recovering agriculture residues and substantial knowledge 
regarding the impact of harvesting them so that the real potential for using agricultural 
residues as bioenergy feedstock can be rigorously assessed. This knowledge is also 
extremely important for developing countries as it defines a scientific basis framework 
for sustainable recovery of agricultural residues taking into consideration not only 
the economic issues, but also the agricultural impacts of the residues in terms of soil 
protection against erosion and soil organic matter (SOM) stock; this system needs only 
to be adapted to the local conditions in developing countries to determine the optimal 
conditions for agricultural residues harvesting.

The anticipated 2014 launch of three full-scale corn stover to ethanol conversion 
facilities is a strong U.S. market signal that sustainable feedstock supplies must 
increase dramatically to supply 242 million Mg yr-1 for each facility producing biofuel at 
252 L Mg-1 (Congress US 2007; Humbird et al. 2011; Schroeder 2011). To achieve that 
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goal without degrading soil quality (Andrews 2006; Reijnders 2006; Wilhelm et al. 2004; 
Wilhelm et al. 2007; Wilhelm et al. 2010), improved agronomic practices are needed. The 
conceptual framework guiding development of those practices (Figure 14.7) illustrates 
how economic drivers focused on feedstock supply and limiting environmental factors 
must be balanced (Wilhelm et al. 2010). The environmental factors were addressed by 
requiring soil erosion to be kept at or below the annual tolerable (T) rate of soil loss as 
defined by USDA-Natural Resources Conservation Service (NRCS), and by using the 
Soil Management Assessment Framework (SMAF) (Andrews et al. 2004; Karlen et al. 
2011a; Karlen et al. 2011b) to monitor SOM and other soil quality indicators (Andrews 
et al. 2004; Karlen et al. 2011a, Karlen et al. 2011b).

Initially, extensive literature reviews were used to determine the amount of surface 
residues required to not only protect against wind and water erosion but also 
sustain SOM because of its effect on aggregation, soil structure, water entry and 
retention, nutrient cycling, and biological food webs. This provided general U.S. 
Corn Belt guidelines showing that an average of 5.25 or 7.90 Mg ha-1 of corn stover 
should be left in the field to sustain SOM for continuous maize (Zea mays L.) or 
maize-soybean [Glycine max (L.) Merr.] rotations. Assuming a 1:1 dry grain to dry 
stover ratio, these guidelines mean that continuous maize fields yielding 8.5 Mg 
ha-1 (160 bu ac-1) of grain could sustainably provide an average of 3.25 Mg ha-1 
(1.25 ton ac-1) of stover.

Figure 14.7. An illustration of competing economic drivers and environmental sustainability 
forces that must be balanced to achieve sustainable cellulosic feedstock supplies to support the 
transition from fossil to renewable fuels (With permission from Wilhelm et al. 2010).
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Since 2008, coordinated, multi-location field trials have added 239 site-years of data 
from 36 replicated field experiments, to help make the general guidelines more site 
specific. Those studies had grain yields ranging from 5.0 to 12.0 Mg ha-1 and showed N, 
P, and K removal was increased by 24, 2.7, and 31 kg ha-1, respectively, with moderate 
(3.9 Mg ha-1) stover harvest or 47, 5.5, and 62 kg ha-1, respectively, with high (7.2 Mg 
ha-1) stover harvest. The field studies also quantified removal effects on SOM, microbial 
communities, trace gases, economics, and other factors (Karlen and Johnson 2014).

Simultaneously, an integrated data management and modeling framework, identified 
as the Landscape Environment Assessment Framework (LEAF) (www.inl.gov/LEAF) 
was developed and verified using the literature guidelines and field data. LEAF 
was designed to perform feedstock availability assessments and explore alternate 
agronomic strategies for increasing feedstock supply without compromising soil, water, 
or air resources. The framework (Muth et al. 2013) integrates the Revised Universal 
Soil Loss Equation 2 (RUSLE2) (USDA 2013a), Wind Erosion Prediction System 
(WEPS) (USDA 2013b), Soil Conditioning Index (SCI) (USDA 2013c), and DAYCENT 
model (Parton et al. 1998). Each model runs in an optimized manner with inputs and 
outputs seamlessly linked through the LEAF framework to produce landscape plans 
(Brick 2011) that if implemented could supply feedstock and protect soil resources.

To date, four key products have been delivered: 1) a revised national assessment for 
the Billion Ton Study Update (USDOE 2011), 2) a sub-field assessment framework 
used to characterize effects of surface topography, soil characteristics, and grain yield 
on sustainable residue removal, 3) an analytical assessment and toolset for designing 
precision agricultural residue removal equipment, and 4) multiple deployments of 
decision support tools being used across the public and private sectors. In summary, 
the strategy for developing sustainable feedstock supplies in the U.S. has been to 
develop trans-disciplinary teams of field researchers, computer modeling engineers, 
and private industry partners. Together they have made progress that could not have 
been achieved independently by any of these groups.

Conclusions: Sustainable biomass feedstock supplies must increase dramatically to 
develop viable biofuels industries. Public-private partnerships are evolving to provide 
the crucial data needed to support these endeavors by balancing economic drivers from 
the industry perspective with natural resource and social concerns of those supplying 
feedstock materials. Rigorous field data and simulation modeling are both crucial and 
easy to use tools to make this simulation a very important component in the process.

14.2.6 Comparison of Biogas Production in 
Germany, California and the United Kingdom
An examination of biogas case studies reveals the importance of consistent leadership 
and adaptive policy support for the adoption of renewable energy. Biogas production 
can be implemented in very low technology, small-scale systems or in very high 

http://www.inl.gov/LEAF
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technology, large-scale systems. The gas has a variety of end-uses including direct 
combustion for heat and cooking, electricity generation, or as transportation fuel 
(Abbassi et al. 2012).

Despite these advantages, biogas contributes very little to current bioenergy portfolios 
of most nations. The reticence to adopt biogas technologies is not technical; factors 
such as cost, public acceptance, knowledge and expertise, environmental policy and 
energy security seem to drive striking differences.

The status of biogas in Germany, California, and the U.K., three regions with similar 
per capita GDP and energy use, is informative (Table 14.6). All three regions began 
implementing agricultural biogas in the 1970s. Today, Germany has over 7,500 
medium- to large-scale plants, more than three times the rest of the EU combined 
and nearly 40 times more than in the U.S. Germany’s success can be largely traced 
to a steady drip of adaptive policy supports starting in 1991 (Figure 14.8) (deGraaf 
and Fendler 2010). Despite similar biogas potentials, California and the U.K. trail 

Table 14.6. Biogas in Germany, California, and the U.K.

Germany California U.K.

Per capita GDP ($USD) 41,514 47,482 38,514

Per capita energy use (kWh) 7,081 6,721 5,516

Per capita fossil natural gas 
consumption (m3)

918 1,695 1,249

Dairy Cows (million) 4.2 1.8 1.8

Biogas facilities* 7,589 11** 106

Biogas Electricity capacity* (MW) 3,179 3 88

Current Feedstocks 85% Dedicated 
energy crops, 
15% manure 
and other waste

90% Manure, 
10% food 
waste

50% Food 
waste, 50% 
manure

Primary Driver Energy Security Environmental 
Impact – Water

Environmental 
Impact - GHGs

Secondary Drivers Farmer Support Environmental 
Impact- GHGs

Landfill 
Limitations 

Biogas Potential (billion m3)* 20 18 5-18

Percentage of Fossil Natural Gas Use 21% 28% 23%

* not including wastewater treatment facilities

** The U.S. has 201 agricultural biogas generating facilities in total

Source: World Bank (2014a, 2014b), IEA (2014), EIA (2014a, 2014b), California Energy Commission (2014), 
European Commission Farm Accountancy Data Network (2013)
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Germany with a little more than 1% of its capacity. Recent E.U. Directives, a desire 
to limit landfill, and a steady decline in offshore natural gas production have spurred 
the U.K. to start investing in biogas, establishing a feed-in tariff and other incentives 
(Biogas UK 2013). The combination of initial policy supports, economies of scale, 
conversion efficiencies, and farm economics resulted in large-scale systems, many 
of which used maize for feedstock. While this provided farm support, it nudged 
up against an unacceptable feed for fuel scenario. As economics for large-scale 
systems improved, it was possible for policymakers to implement incentives for 
heat capture, use of wastes and small-scale systems and thus allow for a more 
desirable path for biogas.

California, on the other hand, has struggled with sporadic programs and inconsistent 
regulations (Sanchez 2013). Unlike Germany, which has a feed-in tariff based on the 
retail electricity rate, California’s feed-in is determined by the wholesale rate, which is 
very low and variable. Whereas Germany has enabled upgrading and connections to 
natural gas pipelines, California biogas producers are hampered by high connection 
costs and variable acceptance criteria. Cheap new sources of domestic natural gas, 
financial constraints, and incentivized on-farm use over grid injection have not helped. 
While the California Energy Commission had assisted on-farm biogas installations in 
the past, changes in NOx emissions standards forced many to shut down, leaving 
farmers reluctant to reinvest (Zhang, 2007). As a result, less than 1% of the state’s 
1600 dairies recover biogas from their herds. Finally, a preference for composting over 
anaerobic digestion in many communities has discouraged biogas from food waste. 
Thus, rather than grow, the number of biogas facilities in California fell by half between 
2008 and 2012 (Sanchez 2013).

Biogas is also important as a clean-burning energy source for rural communities lacking 
access to conventional energy distribution. In the BRIC nations, China and India have 
embraced biogas, while Brazil and Russia have not. China has over 50,000 medium- to 
large-scale digesters and over 40 million household digesters. India has over 4 million 
household digesters and several large-scale projects. In both cases, government was 
critical in adopting biogas, lowering financial barriers and promoting usage. In Brazil, 
with clean, centralized hydroelectricity, and Russia, with large supplies of natural gas, 
there has been little incentive to invest in biogas. Brazil has 22 biogas facilities. While 
there are plans to build biogas plants in Paraná, Brazil (Osava 2013) and the Belgorod 
region of Russia (BD Agrorenewables 2012), the projects face tough economics without 
clear policy supports. In 2012, the Brazilian Energy Agency (ANEEL) called for strategic 
R&D projects related to biogas to support the 2010 National Solid Waste Law aimed at 
reducing landfill and encourage projects dealing with agricultural waste and wastewater.

International development programs play an equally important leadership role for 
developing nations (Table 14.7). The programs provide investment capital, organizational 
capability, knowledge and expertise, which are all essential for adoption of new bioenergy 
options. For example, early programs for households digesters in China (1970s to early 
1990s) often failed because of poor installation and lack of local expertise in care and 
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maintenance. When systems became more widespread and local knowledge grew, 
success and adoption rates increased. Non-profit agencies can fill some of this need, 
as demonstrated by the Netherlands Development Group -SNV (2012). They work with 
local governments to train masons and maintenance operators to build and repair local 
biogas system for cooking and heating using household and farm waste.

Table 14.7. Biogas plants installed in Africa and Asia by non-profit group (SNV), in cooperation 
with the World Wildlife Fund, the Asian Development Bank and the World Bank. (Netherland 
Development Group SNV 2012).

Country Program Start Date Number of Digesters*

Nepal 1992 268,418

Vietnam 2003 140,698

Bangladesh 2006 23,611

Cambodia 2006 17,450

Lao PDR 2006 2,715

Rwanda 2007 2,171

Ethiopia 2008 3,232

Tanzania 2008 3,334

Pakistan 2009 2,097

Indonesia 2009 5,572

Uganda 2009 2,325

Kenya 2009 4,917

Burkina Faso 2009 1,117

Cameroon 2009 111

Benin 2010 42

Senegal 2010 334

Bhutan 2011 155

Total 487,359

 *as of June 2012
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Conclusions: Biogas contributes very little to current bioenergy portfolios of most 
nations even though it has many well-defined advantages. Barriers to adoption are 
socioeconomical rather than technical, including factors such as public acceptance, 
knowledge and expertise, energy and environmental policy, energy access and 
security as well as financial considerations. Successful programs share consistent and 
adaptable leadership, whether at the local, regional or national level.

14.2.7 Wood Pellets and Municipal Solid 
Waste Power in Scandinavia
In population dense communities of Scandinavia, district heating systems have been 
introduced to provide heat and hot water to office buildings, schools, apartment 
buildings, etc. Hot water is distributed from a central thermal energy station. The fuel 
used in many plants can be municipal solid waste (MSW), wood pellets or wood chips.

MSW can only be used in larger plants since the waste, due to hygienic requirements, 
cannot be stored and must be combusted immediately upon arrival at the plant. In 
small plants the heat demand during summer is so low that it would be impossible to 
run a plant without storing the waste during hot periods. Therefore, these plants run on 
woody biomass or bio-oil.

The demand for MSW in the Nordic countries is now so large that there is not enough 
MSW available in the local markets. To cover the demand, MSW is imported from other 
parts of Europe. Some of these plants are or will be retrofitted to run multifuel.

Figure 14.8. Adoption of biogas in Germany with major policy incentives (deGraaf and Fendler 
2010; German Biogas Association 2013).
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The use of bioenergy has increased steadily in Scandinavia and has reached about 
20% of the total energy supply in Sweden (see Figure 14.9). Most of the bioenergy 
comes from forests.

Figure 14.9. Total Primary Energy Supply (TPES) in Sweden in 2012 (Source: IEA 2014). 
Notes:1. Sweden TPES in 2012= 50 162 ktoe (thousand tons of oil equivalent);2. Shares of 
TPES excludes electricity trade;3. In this Figure, peat and oil shale are aggregated with coal, 
when relevant.

Figure 14.10. Akershus energy park in Norway.
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One of the most modern utilities is the Akershus energy park in Norway (Figure 14.10). 
The plant provides heat to some 10,000 persons and local institutions. It opened in 
2011. It was considered to run this plant on MSW, but the summer demand for heat is 
too low. Instead it runs on wood chips, bio-oil and gas from the local landfill.

The plant has 2 furnaces that use chipped wood, mainly from local suppliers. Each 
furnace has a power of 8 MW and the heat in the flue gas is recovered by condensing the 
water vapor, thus making each furnace effectively 10 MW. There are cleaning systems 
for the flue gas and the ash is collected from the bottom of the combustion chamber. 
These 2 furnaces are essentially used for base load and they are not operated during 
summer months when the demand is low.

There is a 1.5 MW gas burner that burns the gas that is piped down from the landfill. 
However, this gas has a low caloric value and the methane and CO content is 
rather low.

Finally, the plant is equipped with some 10,000 m2 of solar thermal collector panels, 
providing 7 MW additional capacity. In combination with a water accumulation tank, this 
heat can be stored for later use.

Conclusions: MSW is an attractive fuel for energy production and the demand is 
increasing in Nordic countries to the point that the demand exceeds the offer, requiring 
the use of supplemental fuels such as wood chips and pellets. Wood pellets and wood 
chips are already increasingly being used directly for heat generation in Scandinavia and 
other northern European countries. The heat is distributed as hot water through pipes that 
connect to major office and apartment buildings in dense areas. In Sweden, bioenergy 
including waste covers about 20% of the primary energy supply. Demand for sustainable 
supplies of wood pellets is currently ahead of that for biofuels in many countries.

14.3 Overall Conclusions
Even for apparently similar situations, the implementation of bioenergy in several 
countries has resulted in different problems and production models that are strongly 
influenced by the local context and supporting policies. This is the case for ethanol 
production in Brazil and Thailand where technology developments and management 
practices evolved slowly in the former, to make it the largest sugarcane ethanol 
producer in the world, while they served as starting point for the latter, adapting 
them to local conditions. Strong and adequate policies were key factors for success 
in both cases. The use of jatropha as a feedstock for biodiesel production has failed 
in several projects, but it is shown that the production model (scale, land tenure, 
interfaces with the local community, etc.) can be adapted to local conditions to 
increase the chances of success.

An important by-product of sugarcane ethanol production is surplus electricity to be sold 
to the national grid or to large consumers directly. The cases of Brazil and Mauritius have 
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shown that government support and wise policies make the difference in determining the 
role that this option plays in the national power generation matrix of each country; the 
potential is far from being reached in Brazil and is fully exploited in Mauritius.

The use of wastes and residues has an enormous potential for bioenergy generation, 
but has failed to become a significant source. The case studies show some of the 
reasons why and also point out that adaptive policies as well as the combination of 
different fuels in an integrated manner can help achieve success. While most people 
believe that agricultural residues can be freely collected and used, detailed studies in 
the USA have demonstrated that there are optimal recovery strategies that depend on 
the local conditions; these findings should be used more broadly in other countries in 
order to develop successful strategies for the use of agricultural residues. The case 
of scale of the processing plants and the existing logistics for transport can play a 
significant role in determining the best model for implementing the projects.

Last, but not least, the lessons that can be learned from these very different cases 
are that proper government policies are essential to increase the chances of success 
of bioenergy programs and projects, and the local conditions and context (technology 
level, driving forces, public support) should be carefully evaluated in the development 
of these policies. There is no single solution that fits all cases.

14.4 Recommendations
The multiple causes for success and failure in the deployment of bioenergy projects 
need to be evaluated and the data organized in a manner that can be used to guide 
selection of the most viable alternatives, and to help develop public policies that will 
support implementation of bioenergy programs. These data must be made widely 
available and disseminated in order to take advantage of the lessons learned.

It is important to identify issues that are strongly dependent on local conditions and 
treat them adequately. Land and water availability, agriculture technology levels, and 
needs for improvement in land tenure, infrastructure and energy systems at both 
regional- and country-scales are all crucial.

The impact of project scale on economics and social indicators need to be better 
understood and the tradeoffs optimized.

All alternative strategies to promote bioenergy should be identified and extensively 
evaluated to determine short, medium and long term effects. Direct subsidies, mandates, 
soft loans, R&D support, infrastructure building and capacity building are some of the 
alternatives that can have different impacts and effectiveness under different conditions.

Build policies that incorporate clear, consistent, and cohesive targets and standards for 
bioenergy production.
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14.5 The Much Needed Science
After producing high yields of feedstocks, they must be processed efficiently. Most 
processing technologies for first generation (1G) biofuels are fully mature, but there is 
still room for improvement, especially in the energy balance.

The full use of feedstocks must be sought to make sure the primary energy content of 
the material is converted to useful products. Here second generation technologies can 
be a great help when integrated with the first generation plant.

Understanding the dynamics of land use change (LUC), both direct and indirect, is 
very important for the assessment of several key impacts on the biofuel sustainability. 
There is no consensus on the methodology to be used and there is a critical shortage 
of reliable, reasonably disaggregated data in time and space. Both of these difficulties 
must be overcome.

Impacts of agroforestry residues on the soil resources, pest populations and disease 
dynamics must be better understood.

Second generation biofuels are very important alternatives, but they need to reach 
economic viability to start to participate in the biofuels pool. Technologies need 
further improvements.
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