To cite this book

Souza, G. M., Victoria, R., Joly, C., & Verdade, L. (Eds.). (2015). Bioenergy & Sustainability: Bridging the gaps (Vol. 72, p. 779). Paris: SCOPE. ISBN 978-2-9545557-0-6

Section I

Foreword

SCOPE Bioenergy & Sustainability Contributors

Acknowledgments

 

Section II - Summaries

Executive Summary

1.  Technical Summary

1.1  Introduction

1.2  Sustainable Development and Innovation

1.3  Global Climate Change

1.4  Planning the Expansion of Bioenergy

1.4.1  Integrated Policy to Maximize Bioenergy Benefits and Positive Synergies

1.4.2  Sustainable and Reliable Biomass Supply

1.4.3  Developing Sustainable Biorefinery Systems

1.4.4  Bioenergy Governance

1.4.5  Bioenergy Certification and Social Aspects

1.4.6  Financing the Bioenergy Effort

1.4.7  Bioenergy Trade Expansion

1.5  Conclusions

 

2.  Bioenergy Numbers

2.1  Introduction

2.2  Bioenergy Production Now

2.2.1  Current Feedstocks

2.2.2  Current Land Use

2.2.3  Current Conversion Technologies

2.2.3.1  Conventional Ethanol

2.2.3.2  Ethanol and Flexible Fuel Vehicle Engines

2.2.3.3  Biodiesel

2.2.3.4  Biodiesel Vehicle Engines

2.2.3.5  Lignocellulosic Ethanol

2.2.3.6  Aviation Biofuels

2.2.3.7  Renewable Diesel

2.2.3.8  Bioelectricity

2.2.3.9  Biogas

2.2.3.10  Biogas Vehicles

2.2.3.11  Heat

2.2.4  Emissions

2.3  Bioenergy Expansion

2.3.1  Land Availability

2.3.2  Biomass Production Potential

2.3.3  Bioenergy Costs

2.3.4  Biomass Supply in the Face of Climate Change

2.3.5  Impacts of Bioenergy Expansion on Biodiversity and Ecosystems

2.3.6  Indirect Effects

2.3.7  Financing

2.3.8  Trade

2.4  Bioenergy Added Benefits to Social and Environmental Development

2.4.1  Biomass Carbon Capture and Sequestration

2.4.2  Improvement of Soil Quality

2.4.3  Increasing Soil Carbon

2.4.4  Pollution Reduction

2.4.5  Social Benefits

 

Section III - Synthesis Chapters

3.   Energy Security

Highlights

3.1  Introduction

3.2  Key Findings

3.2.1  Understanding Energy Security and Bioenergy

3.2.1.1  Availability and Markets

3.2.1.2  Access and Energy Security

3.2.1.3  Usability and Processing

3.2.1.4  Stability and Storage

3.2.2  Interconnectivity with Key Goals and Policies

3.2.2.1  The Food and Security Nexus

3.2.2.2  Economics, Markets and Investment

3.2.3  Bioenergy Technology Related Energy Security Issues

3.2.4  Geopolitics of Bioenergy and Energy Security

3.2.5  Local Issues

3.2.5.1  Lifeline Energy Needs

3.2.5.2  Pollution

3.2.5.3  Water Use

3.2.5.4  Economics, Jobs and Livelihoods

3.2.5.5  Women and Children, Education and Development

3.2.5.6  Health Impacts

3.2.5.7  Co-Benefits and Tradeoffs

3.2.5.8  Research Needs and Sustainability

3.3  Conclusions and Recommendations

3.4  The Much Needed Science

3.4.1  Availability of Sustainable Biomass

3.4.2  Conversion Technologies

3.4.3  Needed Science for Bioenergy to Achieve Maximum Benefit to Energy Security

Acknowledgments

Literature Cited

 

4.  Bioenergy and Food Security

Highlights

Summary

4.1  Introduction

4.1.1  Relevance

4.1.2  What is Food Security?

4.1.3  Ethical Principles

4.1.4  What has changed? - Emerging Evidence on Bioenergy and Food Security

4.1.5  Background and Preconditions

4.2  Key Findings

4.2.1  Food Security, Bioenergy, Land Availability and Biomass Resources

4.2.1.1  Increasing Crop Production versus Increased Demand for Primary Foodstuffs

4.2.1.2  Global Change

4.2.1.3  Land and Water Availability

4.2.2  Interplay between Bioenergy and Food Security

4.2.2.1  Analysis of Food Security in the Bioenergy Context

4.2.2.2  Availability

4.2.2.3  Access

4.2.2.4  Utilization

4.2.2.5  Stability and Resilience

4.2.3  Causal Linkages: Bioenergy, Rural Agricultural Development and Food Security

4.2.4  Governance

4.2.4.1  Introduction

4.2.4.2  Implementation, Scale and Resource Ownership in Relation to Food Security

4.3  Conclusions

4.4  Recommendations for Research, Capacity Building, Communication and Policy Making

4.5  The Much Needed Science

4.5.1  Farming practice and management in relation to food security

4.5.2  Food security indicators and monitoring

4.5.3  Governance including regulations, local and global policies and certification

4.5.4  Finance and investment models

4.5.5  Communication and mutual learning

Acknowledgments

Literature Cited

 

5.  Environmental and Climate Security

Highlights

Summary

5.1  Introduction

5.1.1  Security is Important

5.1.2  Key Opportunities and Challenges

5.2  Key Aspects

5.2.1  Climate Change

5.2.2  Land Use Change (LUC)

5.2.3  Ecosystem Change

5.2.3.1  Agricultural, Forest and Grassland Landscapes

5.2.3.2  Coastal Areas

5.2.3.3  Marginal and Degraded Lands

5.3  Environmental Security

5.3.1  Biodiversity Related Impacts

5.3.2  Water Supply and Quality Impacts

5.3.2.1  Impacts on Water Resource Abundance

5.3.2.2  Impacts on Water Quality

5.3.2.3  Selecting Watershed Appropriate Bioenergy Systems

5.3.3  Soil Quality and Nutrient Cycling Impacts

5.4  Climate Security

5.5  Governance and Policy Guidelines

5.5.1  Underlying Causes of Deforestation

5.5.2  Guidelines for Social and Environmental Factors – Biodiversity, Water

5.6  Conclusions

5.7  Recommendations

5.8  The Much Needed Science

Literature Cited

 

6.  Sustainable Development and Innovation

Highlights

Summary

Examples of Innovative and Integrated Bioenergy Systems

6.1  Introduction

6.2  Bioenergy Systems: the Innovation Perspective

6.2.1  Innovation and Biofuels

6.2.2  Innovative Tools and Methodology Issues

6.2.3  Bioenergy and Food Security: an Innovative Approach

6.3  Need for Increased Capacity in Data Gathering and Analysis

6.4  Capacity Building and Sustainable Bioenergy

6.5  Need for Flexible Financial Models

6.6  Relevance of Consultation and Communication

6.6.1  Public Participation - An Overview

6.6.2  Key Principles of Stakeholder Engagement

6.6.3  Stakeholder Participation in the Bioenergy Sector

6.6.4  Public Perception and Communicating Good Practices

6.7  Final Remarks

6.8  Recommendations

6.9  The Much Needed Science

Literature Cited

 

7.  The Much Needed Science: Filling the Gaps for Sustainable Bioenergy Expansion

Integration of Sciences for Bioenergy to Achieve its Maximum Benefits

7.1  Policy

7.2  Sustainable Biomass Supply

7.3  Feedstocks

7.4  Logistics

7.5  Technologies

7.6  Exploring Social and Environmental Benefits

 

Section IV - Background Chapters

8.  Perspectives on Bioenergy

Highlights

Summary

8.1  Introduction

8.2  The Upward Trajectory of Biofuels

8.3  Low-Carbon Heat and Power

8.4  The Unrealized Potential of Biogas

8.5  Cellulosic Biofuels Have Arrived

8.6  Diesel and Jet-fuel from Sugars

8.7  Biofuels Done Right

8.8  Abundant Idle Land for Bioenergy Production

8.9  Bioenergy Risks and Tradeoffs

Acknowledgments

Literature Cited

 

9.  Land and Bioenergy

Highlights

Summary

9.1  Introduction

9.2  Key Findings

9.2.1  Global Land Availability and Projected Demand for Food, Fiber and Infrastructure

9.2.1.1  Land Demand

9.2.1.2  Current Land Demand for Bioenergy

9.2.1.3  Land Availability

9.2.2  Illustrative Example: Brazilian Land Use and Potential Availability

9.2.3  Land Use Intensities for Bioenergy Supply

9.2.3.1  Biofuels

9.2.3.2  Bioelectricity

9.2.3.3  Bio-Heat

9.2.4  Dynamics of Bioenergy Supply

9.2.5  Biomass Energy Supply: The Answer Depends on How the Question Is Framed

9.2.5.1  Residual Biomass Arising from Non-Bioenergy Activities

9.2.5.2  Separate Analysis of Food and Bioenergy Production Systems

9.2.6  Integrated Analysis of Food and Bioenergy Production Systems

9.2.6.1  Sustainable Intensification

9.2.7  Estimates of Bioenergy Potential

9.3  Discussion and Conclusions

9.4.  Recommendations

9.5.  The Much Needed Science

Literature Cited

 

10.  Feedstocks for Biofuels and Bioenergy

Highlights

Summary

10.1  Introduction

10.2  Maize and Other Grains

10.3  Sugarcane

10.4  Perennial Grasses

10.5  Agave

10.6  Oil Crops

10.7  Forests and Short Rotation Coppice (SRC)

10.8  Algae

10.9  Conclusions

10.10  Recommendations and Much Needed Science

Literature Cited

 

11.  Feedstock Supply Chains

Highlights

Summary

11.1  Introduction

11.2  Key Features of Biomass Supply Chains

11.3  Biomass Crops and their Supply Chains

11.4  Typical Layout of the Biomass Supply Chains

11.4.1  Harvesting and Collection

11.4.2  Transportation

11.4.3  Storage

11.4.4  Pretreatment

11.5  Challenges, Best Practices and Key Lessons in Biomass Supply Chains

11.6  Case Studies of Biomass Supply Chains

11.6.1  Sugarcane

11.6.2  Eucalyptus

11.6.3  Elephant Grass/Miscanthus

11.6.4  Palm Oil

11.7  Concluding Remarks

11.8  Recommendations

11.9  The Much Needed Science

Literature Cited

 

12.  Conversion Technologies for Biofuels and Their Use

Highlights

Summary

12.1  Introduction

12.1.1  Environmental and Sustainability Context

12.1.2  Technology Development and Deployment Context

12.2  Key Findings

12.2.1  Biofuels and Sustainability Are Systems Dependent: Scale, Nature and Location

12.2.1.1  Ethanol

12.2.1.1.1  Maize and Other Grains—Dry Mill Corn Refining Industry Emerged for Ethanol, Feed, and Biodiesel

12.2.1.1.2  Sugarcane Biorefineries Make Ethanol, Sugar, and Power the Grid (mostly based on Walter et al. 2014)

12.2.1.1.3  Scale—Large and Larger, with Small-Scale Ethanol Production Evolving

12.2.1.1.4  Lignocellulosic Ethanol Using Bioconversion Processes in Biorefineries

12.2.1.2  Other Alcohols, Fuel Precursors, and Hydrocarbons from Biochemical Processing

12.2.1.3  Biodiesel—Chemical Processing of Plant Oils or Fats Matures—Small and Large Plants

12.2.1.4  Renewable Diesel—Hybrid Chemical and Thermochemical Processing from Plant Oils or Fats to Hydrocarbons

12.2.1.5  Hydrocarbons, Alcohols, Ethers, Chemicals, and Power from Biomass and Waste Gasification—Flexible Biorefineries to Multiple Products

12.2.1.5.1  Catalytic Upgrading of Syngas—Commercial and Developing Processes—Could Lead to CO2 Capture and Storage

12.2.1.5.2  Bioprocessing Upgrading—Hybrid Processing

12.2.1.6  Liquid Fuels from Biomass Pyrolysis—Multiple Scales for Centralized and Decentralized Production of Bio-Oils and Upgrading

12.2.1.7  Biofuels from Forest Products and Pulp and Paper Biorefineries—Old and New

12.2.1.8  The Commercialization of Advanced Biofuels and Biorefineries

12.2.1.8.1  Partnerships Created Across the Globe Demonstrate Multiple Technically Feasible Options for Advanced Biofuels and Many Types of Biorefineries

12.2.1.8.2  Estimated Production Costs of the Porfolios of Advanced Technologies

12.2.2  Biofuels Utilization in Transport

12.2.2.1  Ethanol Use Increased

12.2.2.1.1  Low and Mid-level Blends Used in More Than Fifty Countries

12.2.2.1.2  Straight Ethanol and Flexible Fuel Vehicles in Brazil, U.S., and Sweden

12.2.2.2  Other Alcohols Are Less Volatile but Have Lower Octane Numbers

12.2.2.3  Biodiesel Is Blended with Diesel, Some Infrastructure and Distribution Issues

12.2.2.4  Biomass-Derived Hydrocarbon Fuels Reach a Larger Fraction of the Barrel of Oil

12.2.2.4.1  Hydrotreated Vegetable Oils or Renewable Diesel is a Hydrocarbon and Can Come from Many Feedstocks

12.2.2.4.2  Developing Bio-Jet Fuels Need a High Density Low Carbon Fuel

12.3  Conclusions

12.4  Recommendations for Research, Capacity Building, and Policy Making

Capacity building recommendations

Policy recommendations

Acknowledgments

Literature Cited

Notes

 

13.  Agriculture and Forestry Integration

Highlights

Summary

13.1  Introduction

13.2  Forestry/Agriculture Interface

13.3  New Paradigms in Ecological Land Management

13.3.1  High Productivity Polyculture Systems

13.3.2  High Productivity Monoculture Systems

13.3.3  The Green Economy

13.4  Integrated Landscape and Bioenergy System Design

13.5  Integrated Natural Forests, Planted Forests, Agroforestry, and Restored and Artificial Prairie Systems as Sources of Biomass - Potentials and Challenges

13.6  Conclusions and Policy Recommendations

13.7  Recommendations

13.8  The Much Needed Science

Acknowledgments

Literature Cited

 

14.  Case Studies

Highlights

Summary

14.1  Introduction

14.2  Key Findings

14.2.1  The Brazilian Experience with Sugarcane Ethanol

14.2.2  Surplus Power Generation in Sugar/Ethanol Mills: Cases in Brazil and Mauritius

14.2.3 The African Experience

14.2.4  The Asia Experience

14.2.5  Biofuels from Agricultural Residues: Assessing Sustainability in the USA Case

14.2.6  Comparison of Biogas Production in Germany, California and the United Kingdom

14.2.7  Wood Pellets and Municipal Solid Waste Power in Scandinavia

14.3  Overall Conclusions

14.4  Recommendations

14.5  The Much Needed Science

Literature Cited

 

15.  Social Considerations

Highlights

Summary

15.1  Introduction

15.2  Review of Legal Frameworks and Social Considerations in Bioenergy Production around the World

15.3  Land, Water and Natural Resources

15.4  Employment, Rural Opportunities and Livelihood Impacts

15.5  Skills and Training

15.6  Poverty, Health and Food Production

15.7  Land Rights, Gender and Vulnerable Groups

15.8  Societal Perception, Corporate Sustainability Reporting and Monitoring

15.9  Conclusions and Recommendations

15.10  The Much Needed Science

Literature Cited

 

16.  Biofuel Impacts on Biodiversity and Ecosystem Services

Highlights

Summary

16.1  Introduction

16.2  Key Findings

16.2.1  Identification and Conservation of Priority Biodiversity Areas are Paramount

16.2.1.1  Effects of Feedstock Production on Biodiversity and Ecosystem Services are Context Specific

16.2.1.2  Location-Specific Management of Feedstock Production Systems should be Implemented to Maintain Biodiversity and Ecosystem Services

16.2.2  Biofuel Feedstock Production Interactions with Biodiversity

16.2.2.1  Impacts of Land-Use Change and Production Intensification

16.2.2.2  Invasion of Exotic Species introduced through Biofuel Production Activities

16.2.3  Ecosystem Services and Biofuel Feedstock Production

16.2.4  Mitigating Impacts of Biofuel Production on Biodiversity and Ecosystem Services

16.2.4.1  Zoning

16.2.4.2  Wildlife Friendly Management Practices

16.2.4.3  Biodiversity and Environmental Monitoring

16.3  Conclusions

16.4  Recommendations

Acknowledgments

Literature Cited

 

17.  Greenhouse Gas Emissions from Bioenergy

Highlights

Summary

17.1  Introduction

17.2  Key Findings

17.2.1  Life Cycle Assessments of GHG Emissions from Biofuels

17.2.1.1  LCA Issues in GHG Emissions

17.2.1.2  LCA Results of Greenhouse Gas Emissions for Biofuels

17.2.1.2.1  LCA Results for Commercial Liquid Biofuels

17.2.1.2.2  LCA Results for Solid Biofuels

17.2.2  Land Use Changes and GHG Emissions

17.2.2.1  Models Results: iLUC Factors

17.2.2.2  Biofuels iLUC

17.2.2.3  Translating Land Use Changes into GHG Emissions

17.2.2.4  Options for Mitigating iLUC from a Policy Making Perspective

17.2.3  Bioenergy Systems, Timing of GHG Emissions and Removals,and non-GHG Climate Change Effects

17.2.4  Funding Innovation: Data Needed to Support Policies and Strategic Decisions

17.3 Conclusions

17.4 Recommendations

17.5 The Much Needed Science

Literature Cited

 

18.  Soils and Water

Highlights

Summary

18.1  Introduction

18.1.1  Interconnectivity of Water and Soil

18.1.2  Metrics

18.2  Water Impacts of Modern Bioenergy

18.2.1 Water Impacts Current and Novel feedstocks

18.2.1.1  Annual Bioenergy Crops

18.2.1.2  Perennial and Semi-Perennial Crops

18.2.1.3  Forest Biomass in Long Rotation

18.2.1.4  Organic Waste and Residues

18.2.1.5  Algae

18.2.2  Water Impacts of Conversion Technologies

18.3  Soil Impacts of Modern Bioenergy

18.3.1  Soil Impacts of Current and Novel Feedstocks

18.3.1.1  Annual Bioenergy Crops

18.3.1.2  Perennial and Semi-Perennial Crops

18.3.1.3  Forest Biomass in Long Rotation

18.3.1.4  Waste Biomass

18.3.2  Phytoremediation and Recovery of Marginal Soils

18.4  Anticipating Changes Associated with Expansion of Bioenergy Production

18.4.1  Effects of Land Cover Change

18.4.1.1  Effects of Land Cover Change on Water

18.4.1.2  Effects of Land Cover Change on Soils

18.4.2  Effects of Changes in Residue Management and Irrigation Use and Practice

18.4.2.1  Effects of Changes in Residue Management

18.4.2.2  Effects of Changes in Irrigation Use and Practice

18.5  Minimizing Impact of Bioenergy Production

18.5.1  Selecting Appropriate Bioenergy Systems for Ecosystems

18.5.2  Landscape-Level Planning and Mixed Systems

18.5.3  Evolution in Best Management Practices

18.5.4  Using Wastes in Bioenergy Systems to Improve Water and Soil Quality, Close the Nutrient Cycle, and Recover Energy

18.5.4.1  Fertirrigation

18.5.4.2  Municipal Solid Waste and Wastewater Digestion (Biogas)

18.5.4.3  Ash and Biochar

18.6  Policy and Governance

18.7  Conclusions

18.8  Recommendations

18.9  The Much Needed Science

Literature Cited

 

19.  Sustainability Certification

Summary

19.1  Introduction

19.2  The Rationale for Sustainability Certification and Baseline Sustainability Principles

19.2.1  Regulatory Motivations For Certification

19.2.2  Types of Sustainability Certifications

19.2.2.1  Forest Certification Systems

19.2.2.2  Agricultural Certification Systems

19.2.2.3  Biofuel/Bioliquids Certification Systems

19.2.2.4  Wood Pellet Certification Systems

19.2.2.5  Summary of Environmental and Social Indicators

19.3  Implementation Challenges for Bioenergy Certification Standards

19.3.1  Biodiversity Measurement and Protection

19.3.2  Water Quality

19.3.3  "Shed" Level Sustainability Assessments

19.3.4  Forest Carbon Accounting

19.4  Accounting for “Indirect” Effects

19.5  Standards Governance and Social Sustainability

19.6  The Efficacy of and Challenges to International Harmonization

19.7  Conclusions

19.8  Highlights and Recommendations

19.9  The Much Needed Science

Literature Cited

 

20.  Bioenergy Economics and Policies

Highlights

Summary

20.1  Introduction

20.2  Key Findings

20.2.1  Economic Developments in the Bioenergy Market

20.2.2  Bioenergy Policies are a Key Driver

20.2.3  Analyses Framework of Bioenergy within the Emerging Bioeconomy

20.2.4  Arguments for Policy Interventions

20.2.5  Economic Impact of Government Policies

20.3  Conclusion

20.4  Recommendations (Policy)

20.5  The Much Needed Science

Literature Cited

 

21.  Biomass Resources, Energy Access and Poverty Reduction

Highlights

Summary

21.1  Introduction

21.2  Poverty, Inequality and Poverty Reduction

21.3  Bioenergy and Poverty Reduction. International Programs

21.4  Technologies: Biogas, Cooking Stoves, Minigrids

21.5  Energy Access and Rural Development: the Role of Modern Bioenergy

21.6  Case Studies: Improved Cookstoves for Energy Access, the EnDev Program in Kenya

21.7  Cross Sector-Synergies: Including Investment and Institutions

21.8  Conclusions and Recommendations

21.9  The Much Needed Science

Literature Cited

 

Section V

Countries and regions cited in SCOPE Bioenergy & Sustainability

SCOPE Bioenergy & Sustainability Keywords

i

iii

v

xi

 

3

4

8

12

13

14

15

17

20

21

23

24

24

25

25

 

28

29

29

30

33

33

33

35

35

36

 36

37

37

37

38

40

40

40

42

42

44

46

47

47

49

49

50

50

50

52

53

55

55

 

59

60

61

62

62

62

64

66

66

68

69

71

 73

74

76

79

79

80

80

81

82

82

82

83

83

84

85

85

86

86

87

 

90

91

91

93

93

97

97

99

101

102

102

102

 105

106

107

107

109

109

110

110

112

116

116

118

120

124

127

127

127

129

129

129

130

130

 

138

139

140

143

143

144

145

145

146

 149

149

150

151

153

154

156

156

158

159

159

164

168

169

170

171

171

175

175

 

184

185

185

186

187

190

192

192

196

197

201

202

 206

206

207

208

210

211

212

214

214

 


218

219

221

222

223

224

225

226

 

229

230

231

231

232

233

244

245

246

247

248

249

251

 253

253

 

258

259

260

260

262

262

262

264

266

271

275

275

276

276

279

282

283

284

285

286

288

289

293

294

295

 

302

303

304

306

 308

314

318

322

324

327

331

335

336

337

 

348

349

350

350

351

352

353

353

354

355

356

357

358

358

361

362

363

364

365

366

367

 

374

375

378

381

383

390

394

397

403

404

405

407

408

413

416

417


417


418

421


422

425

426


427

 429

431

431

432

435

435

437

438

438

439

440

444

445

445

446

446

461

 

468

469

469

469

470

472

473

475

476

479

 

480

482

483

484

485

485

 

490

491

492

493

494

494

497

503

506

512

514

518

520

521

522

522

 

528

529

529

530

532

 535

536

537

538

540

542

543

544

545

 

554

555

556

556

557

557

558


560

560

560

565

565

565

569

569

570

570

 571

571

571

 

582

583

583

584

585

585

585

587

588

592

594

595

598

599

601

602

603

606

608

608

609

 

618

619

619

621

621

622

 626

627

627

627

628

628

628

629

630

630

631

631

631

632

633

633

633

634

638

638

638

639

640

640

641

641

642

642

644

645

645

 646

647

648

649

 

660

661

661

664

664

665

665

666

666

666

667

668

668

670

670

671

672

672

675

675

677

678

678

 

682

683

683

 683

685

685

688

690

694

699

702

703

704

704

 

710

711

711

711

712

717

719

721

723

725

725

726

726

 

731

733

734

 

 

 

Search and highlight

Copyright © 2013 SCOPE Bioenergy. All rights reserved.