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 9 
Latin American and Caribbean’s (LAC) external depen dency on fossil fuels and the pursuit for renewable  energy leads 10 
to the need for a strategy to afford a cleaner and reliable domestic energy supply. Sugarcane presents high 11 
photosynthetic efficiency and it is a well-spread c rop in LAC. Our study aims to explore the potential  of different 12 
approaches of modern energy production from sugarca ne, at a national level, and its implication to the  environmental 13 
aspects. We found that Guatemala, Nicaragua and Cub a would be able to replace 10% of the gasoline and about 2-3% 14 
of the diesel consumption by only using the current  molasses. With a slight expansion on sugarcane pro duction, 15 
Bolivia can replace 20% of the gasoline and diesel,  besides providing surplus ethanol for exportation or other 16 
purposes. With a minor investment, bagasse may enla rge the electricity access in many countries wherea s in other 17 
may represent an alternative to replace fossil fuel  sources. We also found relevant potential on reduc ing the GHG 18 
emissions specially in Bolivia, Paraguay and Nicarag ua. However, the implementation of such strategies must be 19 
supported by appropriate policies to ensure competi tive prices, overcome opportunity costs, and stimul ate 20 
investments.  21 
 22 
Keywords: Sustainability, biofuel, bioelectricity, d eveloping countries 23 
 24 
 25 

1. Introduction 26 

 27 
Imports of gasoline and diesel account for more than half of the national consumption in most of the Latin 28 

America & Caribbean (LAC) countries; some nations such as Guatemala, Honduras, Panama and Paraguay 29 

depend entirely on external supply [1]. The liquid fuel consumption in South and Central America is expected to 30 

rise 35% from 2015 to 2035 [2]. Electricity access is also an issue for over 20 million people in Latin America, in 31 

which lack of electrification achieve 10-15% of the population in Bolivia, Guatemala, Honduras and Panama and 32 

26% in Nicaragua [3]. The high rates of economic development and demographic growth in LAC countries has 33 

enlarged the electricity demand, which generation is expected to increase over 60% in the next 20 years [3].  34 

Such situation, along with the need for strategies aligned to human development and environmental benefits, 35 

imposes challenges to governments and private sectors. Bioenergy can play a key role on providing cleaner and 36 

more accessible and affordable energy [4–6]. Among the options, sugarcane bioenergy is a promising alternative 37 

as it can reduce GHG emissions compared to fossil fuels [7], promote social development [8] and be produced at 38 

competitive costs [9].  39 

                                                 
1 Present affiliation: Department of Civil & Environmental Engineering, University of New Hampshire, Durham, NH, 
USA. 
* Corresponding author: sp.souza@yahoo.com.br 
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Initiatives of ethanol-gasoline blending, for instance, have already been established or are under discussion 40 

in LAC countries (Table 1). Paraguay and Brazil comprise the highest blends in LAC and other countries, such as 41 

Cuba, El Salvador, Honduras, and Nicaragua, have not yet established any mandate or plan for gasoline-ethanol 42 

blend.  43 

 44 

Table 1.  45 
Current gasoline-ethanol blend in LAC countries. 46 

Countries Blend 

Argentina 10% a 
Bolivia Under discussion b 
Brazil 27% a 
Colombia 8-10% a 
Costa Rica 0-8% a,c 
Cuba No blend 
Dominican Republic Under discussion d 
Ecuador 5% a,e 
El Salvador No blend a 
Guatemala 0-10% f 
Honduras No blend a 
Jamaica 10% g 
Mexico 6% a,h 
Nicaragua No blend a 
Panama Temporally suspended a 
Paraguay 27.6% i 
Peru 7.8% a 
Venezuela Temporally suspended a 
Note: a [10]. b [11]. c Currently 0% until regulated. d Planning 5-25% blend [12]. e Only in Guayaquil. f Policy under 47 
implementation [13]. g [14]. h Only in Guadalajara, Monterrey and Mexico D.F. i [15].  48 

 49 

 50 

Despite the potential for sugarcane cultivation and bioenergy production in all LAC countries, Brazil is the 51 

only one in which sugarcane products have an expressive contribution on energy sector, comprising 16% of the 52 

national energy supply [16]. This scenario is justified by the 750 million tons per year of sugarcane, placing the 53 

country as the world largest sugarcane producer, which along with Mexico, Colombia, Guatemala and Argentina 54 

comprise 90% of the LAC supply [17].  55 

Currently, sugarcane corresponds to less than 10% of the arable land 2 in most of the LAC countries, 56 

although it is higher in Colombia, Costa Rica and Guatemala – around 25% – and Mexico – up to 50% [17,18]. The 57 

land-use for bioenergy crops, however, has frequently been portrait as an issue because may face competition with 58 

food production [19,20].  59 

                                                 
2 According to FAO, arable land is defined as “land under temporary agricultural crops (multiple-cropped areas are counted only 
once), temporary meadows for mowing or pasture, land under market and kitchen gardens and land temporarily fallow (less 
than five years)”.  
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Large tracts of land sparsely occupied, generally dedicated to degraded pastures in low productivity cattle 60 

ranching, characterize the Latin America countries [21]. Strategies such as pasture intensification can therefore 61 

enlarge the availability of arable land, avoid indirect land use change [22] and thus the carbon emission from 62 

sugarcane expansion over other crops or forest [23]. For instance, the pasture area in Brazil, about one quarter of 63 

whole national area, was reduced by 15% (180 to 152 Mha) between 1980 to 2010, while the cattle herd increased 64 

by 68% (127 to 213 million head) (data from IBGE, http://www.sidra.ibge.gov.br/bda/pesquisas/ca/ [24]). Better 65 

practices can also freed up land for other uses [25].   66 

Regarding the competition between fuel and food, the sugarcane industry has the great advantage of 67 

allowing the production of both sugar and ethanol with considerable flexibility on choosing the share of the final 68 

products [26]. If desired, ethanol can be produced only from molasses, a coproduct from sugar production.  69 

Sugarcane can also be produced in land not used or unsuitable for food crop production [25], or cultivated by 70 

using food-energy integrated approaches [27,28]. In addition, sugarcane is a semi-perennial crop and one of the 71 

most efficient solar energy converter, demanding a reduced plantation area when compared with other options [29]. 72 

As a semi-perennial crop, sugarcane areas can also be used to grow other crops during the rotation practices, 73 

usually every five years.   74 

Given these opportunities, this study aims to explore the potential of sugarcane as energy supplier in Latin 75 

America & Caribbean, at country level, and its implication to the GHG emission savings. Ethanol is produced 76 

aiming to replace gasoline and diesel used as vehicle fuel. Bagasse feeds cogeneration system contributing to 77 

electricity generation. 78 

In recent times, sugarcane has also been increasingly considered as a feasible feedstock for several 79 

chemical and biochemical products, from synthetic rubber to pharmaceutics products, including second-generation 80 

(2G) ethanol [30–32]. This study, however, addresses exclusively the production of ethanol and electricity as they 81 

comprise well-known technologies, the current state-of-art, and are consistent with the economic and development 82 

scenario in LAC countries. 83 

2. Materials and methods 84 

 85 
We estimate the potential supply of bioenergy from sugarcane in LAC for short and long-term contexts 86 

assuming two scenarios (Table 2): 87 

• Mature Context (MC): represents a short-term framework. Ethanol is produced exclusively from 88 

molasses, considering the existing sugarcane production (Table 3). We assume that the sugarcane industries will 89 

be able to deploy a cogeneration system yielding 60 kWh/t cane, if it doesn´t exist. Surplus electricity corresponds 90 
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to 30 kWh/t cane, at 42 bar and 450oC (low-efficiency boiler). Ethanol is used for gasoline replacement at a blend 91 

up to 10% (v/v), which does not require any change of technology [33]. Surplus ethanol, when available, is used to 92 

displace diesel in heavy-vehicle up to 10% (v/v). The use of ethanol in diesel engine is supported by the Scania 93 

technology which allows the use of pure ethanol with 5% ignition improver in a diesel engine (BioEthanol for 94 

Sustainable Transport project [34]). 95 

 96 
• New Framework (NF): enhanced approach likely to be deployed under medium to long-term. 97 

Sugarcane is cultivated over 1% of the current pasture land (Table 3). Besides molasses, ethanol is also produced 98 

from direct juice (additional sugarcane). The gasoline-ethanol blend is up to 20% (v/v), which requires relatively 99 

simple changes on engine technology [33]. After supplying the E20 blend, surpluses of ethanol are allocated to 100 

diesel displacement. Diesel replacement is up to 20% (v/v). Cogeneration system presents higher efficiency 101 

compared to MC scenario, working at 65 bar and 480oC and able to provide 80 kWh/t cane of surplus electricity. 102 

Population and energy consumption for 2030 are presented in Table 4. 103 

Table 2. 104 
Scenario assumptions. 105 

Parameters Mature Context New Framework 

Mill crushing capacity (t/year) 106 106 

Ethanol yield from molasses (L/t cane) a 10 10 
Ethanol yield from direct juice (L/t cane) b Not applied 80 
Ethanol source Molasses Molasses and juice 
Pasture area allocated for sugarcane cropping c 0% 1% 
Surplus electricity (kWh/t cane) d 30 80 

Gasoline replacement limit 10% 20% 

Diesel replacement limit 10% 20% 
Notes: a Data from United Nation [35]. b Average from Brazilian South-Central region [36]. c Available pasture land according 106 
to FAOSTAT, http://faostat.fao.org [37]. d Ethanol distillery consumes 30 kWh/t cane (mechanical and electrical energy) [38]. 107 
Electricity production in the MC and NF scenarios are 60 kWh/t cane (42 bar, 450 ºC) and 110 kWh/t cane (65 bar, 480 ºC), 108 
respectively [30]. 109 
 110 
  111 
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Table 3.  112 
Current sugarcane overview and pasture land. 113 

Country Sugarcane 
production  
[103 t/year] a,b 

Sugarcane area 
[103 ha] a,b 

Current pasture 
land 
[103 ha] a,b 

Sugarcane 
expansion  
[103 ha] c 

Sugarcane yield 
[t/ha] a,d 

Argentina 19,766 360 108,500 1,085 59 

Bolivia 7,692 159 33,000 330 48 

Colombia 33,364 397 39,165 392 90 

Costa Rica 4,440 58 1,300 13 71 

Cuba 14,700 361 2,834 28 36 
Dominican 
Republic 4,866 107 1,197 12 48 

Ecuador 7,379 95 4,976 50 79 

El Salvador 6,487 73 637 6 87 

Guatemala 23,653 256 1,950 20 95 

Honduras 5,861 70 1,760 18 83 

Mexico 1,475 28 229 2 53 

Nicaragua 50,946 735 80,897 809 73 

Panama 6,732 67 3,275 33 96 

Paraguay 2,276 33 1,540 15 67 

Peru 4,186 115 17,000 170 48 

Venezuela 10,369 81 18,797 188 128 
a Data from FAOSTAT, http://faostat.fao.org [37]. b 2012 values. c New Framework scenario; 1% of the current pasture land. d 114 
Average value from 2010 to 2014. 115 
 116 

Table 4.   117 
Population and energy consumption for MC and NF scenarios. 118 

Country 

Population 
[1000 people] a 

Electricity consumption 
[GWh/year] 

Gasoline 
[106 L/year] 

Distillate fuel oil 
[106 L/year] 

Current  
[2012] 

Projection  
[2030] 

Current  
 [2012] b 

Projection  
[2030] c 

Current  
[2012] b 

Projection  
[2030] d 

Current 
[2012] b 

Projection  
[2030] d 

Argentina 41,087 49,365 110,699 181,270 7,735 11,370 13,138 19,313 

Bolivia 10,496 13,177 6,457 10,573 1,143 1,680 1,620 2,381 

Colombia 47,704 53,175 52,671 86,248 4,799 7,055 8,275 12,165 

Costa Rica 4,805 5,413 8,987 14,716 1,001 1,471 1,075 1,580 

Cuba 11,271 11,237 14,463 23,683 597 877 1,375 2,022 
Dominican 
Republic 10,277 12,087 11,958 19,581 1,545 2,271 1,594 2,344 

Ecuador 15,492 19,563 19,020 31,145 3,778 5,554 4,874 7,165 

El Salvador 6,297 6,408 5,655 9,260 589 865 713 1,048 

Guatemala 15,083 21,424 7,902 12,940 1,260 1,852 1,524 2,240 

Honduras 7,936 9,737 5,238 8,577 690 1,015 897 1,318 

Mexico 120,847 148,133 246,508 403,657 602 885 538 790 

Nicaragua 5,992 7,033 3,264 5,345 45,090 66,282 24,988 36,732 

Panama 3,802 4,781 7,128 11,672 328 482 550 809 

Paraguay 6,687 7,845 8,125 13,305 918 1,350 1,443 2,122 

Peru 29,988 36,855 35,688 58,439 494 726 1,271 1,869 

Venezuela 29,955 36,674 93,821 153,632 2,078 3,054 5,365 7,886 
a Data from FAOSTAT, http://faostat.fao.org [37]. b Data from EIA [1]. c Increasing rate from 2012 to 2030: 64% [3].d Increasing 119 
rate for liquid fuels from 2012 to 2030: 47% [39].  120 
 121 
 122 

 123 
 124 
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Our scope considers LAC’s countries with sugarcane production higher than 4 million tons per year, which 125 

correspond to 95% of the LAC production [17]. We exclude Brazil due to the well-known contribution of sugarcane 126 

on the national energy supply [40–43]. We assume 5-years average (2010-2014) for the sugarcane yield at country 127 

level (Table 3). Currently, sugarcane yields between 35 t/ha (Cuba) to 130 t/ha (Peru) in the Latin America regions 128 

[37].  129 

In both scenarios, the priority is to use ethanol for gasoline replacement and then as diesel displacement up 130 

to an adopted threshold (Table 2). Surplus ethanol is possible after attending these demands. Such conditions are 131 

summarized in the following equations and inequations:   132 

���� = ��: 0% ≤ � ≤ 10% = �0%, 10%�, as for MC scenario. (1) ���� = ��: 0% ≤ � ≤ 20% = �0%, 20%�, as for NF scenario. (2) 

���� = ��: 0% ≤ � ≤ 10% = �0%, 10%�, as for MC scenario. (3) ���� = ��: 0% ≤ � ≤ 20% = �0%, 20%�, as for NF scenario.  (4) 

If ���	 ≤	������ 	→ 	 ��� = 	����� (5) 

If ���	 >	������ 	→ 	 ��� = 	������		����  (6) 

If !���	 >	 ������ +	������ 	→ 	 ��� =	������		������	#$�, %&	'()	*+	&,-.%)/(; 	%.1
���	 >	����2� +	���2�� 	→ 	 ��� = 	���2��		���2��	#$�, %&	'()	34	&,-.%)/(				  

(7) 

 133 

Where, QGR and QDR are the gasoline and diesel replacement, respectively, which blend varies from x=0 to 134 

x=10% for MC scenario, or y=0 to y=20% for NF scenario. St is the total supply, Qt is the total demand and Es the 135 

surplus ethanol. The potential gasoline and diesel replacement are calculated considering the direct relation of 136 

lower heating values (LHV) between the fossil fuels and the ethanol. For instance, consider the LHV of 32.36 MJ/L 137 

and 21.27 MJ/L for gasoline and ethanol, respectively (refer to note on Table 5).  For each liter of gasoline, it is 138 

required 1.52 liters of ethanol to deliver the same amount of energy (1 MJ).   139 

Electricity is produced from sugarcane bagasse. After supplying the sugarcane industry demand, surplus 140 

electricity is available. We determine the spare electricity based on the sugarcane production (Table 3) and on the 141 

estimated surplus electricity productivity, as described in Table 2 (refer to ‘Surplus electricity’). We estimate the 142 

future electricity demand for 2030 (NF scenario) by considering an increasing rate of 64% over the 2012 143 

consumption [3]. The contribution of bagasse as electricity source for each country is thus estimated by considering 144 

the surplus electricity and the current and projected electricity consumption (Table 4). 145 

2.1. GHG emission savings 146 

 147 

We evaluate the GHG emissions for the New Framework scenario aiming to identify the potential carbon 148 

savings if the countries invest on rethinking their energy generation profile for 2030, i.e., using ethanol as fuel 149 
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instead of gasoline and diesel, and bagasse for electricity generation rather than maintaining the current electrical 150 

generation system. We identify the GHG emission factor (t CO2e/GWh) for the electricity sector according to the 151 

countries current profile (Table 6) and considering the life-cycle perspective (Table 5) for ethanol, gasoline, diesel 152 

and electricity from bagasse cogeneration. Emission factors also correspond to the life-cycle approach. 153 

Table 5. 154 
Life-cycle GHG emissions from electricity and fuels. 155 

Electricity generation  t CO2e/GWh 
Oil a 840 
Coal a 1001 
Natural gas a 469 
Hydro a 4 
Nuclear a 16 
Solar PV a 46 
Solar CSP a 22 
Geothermal a 45 
Bio-power a 18 
Wind a 12 
Electricity from bagasse b 66.5 

Fuels  t CO2e/TJ 
Sugarcane ethanol b 18.5 
Gasoline c 95.6 
Diesel c 92.8 

Note: a Data from IPCC [44]. b GHG emissions (Well-to-Wheel) for bagasse electricity and sugarcane ethanol were adapted 156 
from Souza et al. [45] considering 30% of mechanized harvesting and 70% of burning harvesting. GHG emissions were 157 
allocated by energy basis. c GHG emissions (WTW) refers to pure gasoline blended with 10% of MTBE and were modelled 158 
by using Argonne GREET Model 2014 [46]. The avoided emission due to gasoline replacement is 77 t CO2e/TJ [95.6 – 18.5 159 
t CO2e/TJ]. The lower heating values assumed for pure gasoline, ethanol and diesel were 32.36 MJ/L, 21.27 MJ/L and 35.8 160 
MJ/L, respectively [46].  161 
 162 
 163 
 164 
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Table 6. 165 
Electricity generation in LAC countries by source and the associated emission factors. 166 

Countries 
Total generation 
[GWh/year] a 

Source a 
t CO2e/GWh b 

Coal Oil Gas Biofuels Nuclear Hydro 
Geo 
thermal Solar PV Wind 

Argentina 135,199 3% 15% 54% 2% 5% 22% - - - 406 
Bolivia 7,661 - 2% 66% 2% - 31% - - - 327 
Colombia 62,337 5% 1% 14% 3% - 76% - - - 131 
Costa Rica 10,174 - 8% - 2% - 71% 14% - - 79 
Cuba 18,428 - 85% 11% 3% - 1% - - - 767 
Dominican 
Republic 16,907 13% 52% 23% - - 11% - 1% - 678 

Ecuador 22,847 - 35% 10% 1% - 54% - - - 344 
El Salvador 5,866 - 36% - 6% - 31% 26% - - 316 
Guatemala 9,412 13% 20% - 17% - 47% 3% - - 305 
Honduras 7,740 1% 49% - 9% - 36% - - - 431 
Mexico 293,862 12% 19% 51% 1% 3% 11% 2% - - 519 
Nicaragua 4,031 - 57% - 11% - 10% 13% - 8% 490 
Panama 8,606 8% 29% - - - 63% - - - 327 
Paraguay 60,235 - - - - - 100% - - - 4 
Peru 39,909 2% 4% 39% 2% - 54% - - - 236 
Venezuela 121,653 - 16% 16% - - 67% - - - 215 
a Data from International Energy Agency [47]; b According to Table 5. 167 
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2.2. Investments 168 

New investments are required in the NF scenario to expand the sugarcane cropping and build new factories. 169 

Based on the sugarcane expansion and sugarcane yield (Table 3), we estimated the total sugarcane supply for the 170 

NF scenario. By considering a mill crushing capacity of one million tons of sugarcane (Table 2), we identified the 171 

number of mills. We assumed an investment of 132.2 US$/t cane for the industrial sector (including mill and 172 

cogeneration system) [48]  and 7.5 USD/t cane for the sugarcane area expansion (average value for the sugarcane 173 

expansion region in Brazil) [49]. All values are based on 2014 current price. The total investment was split over 10 174 

years. We do not consider investments on power distribution and transmission system assuming it would happen 175 

anyway with the increasing on the power demand. 176 

3. Results and Discussion 177 

We evaluated the potential of sugarcane to provide a cleaner energy source in Latin American & Caribbean 178 

by considering a short-term framework, named Current Molasses (CM) scenario, and an enhanced approach likely 179 

to be deployed over the medium to long-term, entitled New Framework (NF) scenario. Results show the potential of 180 

energy supply, the GHG emissions savings, and the total investment required to enlarge the sugarcane production, 181 

with further discussion on challenges to implement such bioenergy system in Latin America. We found that building 182 

new sugarcane mills would represent a large potential on replacing fossil fuels and providing bioelectricity in most 183 

of LAC countries. 184 

 185 
3.1. Sugarcane ethanol as energy source 186 

 187 

Our results indicate that both scenarios can bring important contribution on replacing fossil fuel in LAC. By 188 

only using the current availability of molasses to produce ethanol it would be able to replace at least 10% of 189 

gasoline in Nicaragua, Guatemala and Cuba (Fig.1a). Additionally, these countries could also replace diesel by 2-190 

3%. El Salvador and Honduras, which do not have any blending program, could displace more than 5% of the 191 

gasoline consumption by using molasses. Over 80% of these countries’ gasoline consumption is provided by 192 

international market (EIA, 2012). In Nicaragua, in which net gasoline imports are 50% of the total consumption, the 193 

production of ethanol from molasses could reduce on 25% the external dependency. As for Guatemala, which is 194 

totally dependent on external gasoline supply, MC scenario could cut down 10% of its fossil fuel imports. Cuba is 195 

already a gasoline exporter and, therefore, ethanol production can displace gasoline and then increase exports, or 196 

provide ethanol for international market. With about 330 million liters of ethanol, Colombia could pledge E5 blend; 197 
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though the current ethanol-gasoline mandate is 8-10% (Table 1) – also produced exclusively from molasses. The 198 

difference is because the ethanol yield from molasses in Colombia is 19 L/t cane [50] – almost twice the one 199 

adopted in this study (Table 2).  200 

 201 
<< Figure 1 here >> 202 
 203 
Fig. 1. Potential ethanol supply. a, MC scenario (Venezuela value is less than 1%). b, NF scenario. Identifications (Ex) indicate 204 
potential diesel replacement and gasoline blend. Values calculated based on equations and inequations (1-7) presented on 205 
Section 2.  206 
 207 
 208 

As for New Framework scenario, sugarcane ethanol could offer E10 gasoline-blend in most of the countries. 209 

Paraguay and Bolivia would be able to displace 20% of the gasoline and diesel (Fig. 1b). Currently, the gasoline 210 

blending mandate in Paraguay is 24% (v/v) of ethanol, and none in Bolivia (Table 1). Bolivia could eliminate its 211 

gasoline imports and reduce about 40% the diesel external dependency by using 1% of the pasture land for 212 

sugarcane ethanol production. Paraguay could reduce 80% and 20% of its gasoline and diesel external 213 

dependency, respectively. Gasoline and diesel imports can drop down by 80% and 30% in Nicaragua, respectively.  214 

Despite the potential on eliminating the external dependency on gasoline and diesel, countries may not be 215 

interested on interrupting international relationships. Sugarcane ethanol can represent an export opportunity, 216 

especially for USA and Europe in which renewable fuel national programs impose the use of biofuel able to reduce 217 

the GHG emissions [51–53]. 218 

3.2. Potential electricity supply 219 

 220 

Currently, sugarcane bagasse has low contribution on power energy mix in LAC. In Colombia and 221 

Guatemala, this coproduct contributes to 1% [54] and 1.5% [55] of the current electricity generation, respectively. 222 

We found that there is potential to enlarge the use of bagasse. In the MC scenario, Colombia, Guatemala and 223 

Mexico show the higher electricity production due to the current sugarcane supply. By using 1% of the pasture land 224 

to enlarge the sugarcane cropping, Argentina, Peru, Guatemala and Bolivia can also significantly increase the 225 

electricity generation from bagasse (Fig. 2).  However, the contribution of this coproduct on electricity generation 226 

profile will depend on the national demand. In Bolivia, 11.5% of the population lack access to electricity [3]. 227 

Bagasse can supply 3.5% of the current electricity demand in Bolivia, El Salvador and Honduras, considering the 228 

existing sugarcane (MC scenario) (Fig. 3). The higher potentials are in Guatemala and Nicaragua in which bagasse 229 

can contribute to 9% and 7% of the electricity demand, respectively. In these countries, around 15% and 30% of 230 

the population still lack access to electricity, respectively [3]. Thus, producing electricity from bagasse may enlarge 231 

the energy access whereas in other countries may represent an alternative to replace fossil fuel sources. In Bolivia, 232 
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for example, in which renewable energy represents only 1.6% of the current electricity generation, excluding 233 

hydropower (Table 6), bagasse can contribute to improve the energy profile by providing an alternative to fossil fuel.  234 

By expanding the sugarcane production (NF scenario), bagasse could afford 1,900 GWh per year (Fig. 2) of 235 

electricity in Bolivia, 15% of the total national generation in 2030. Despite the potential, laws and programs on 236 

renewable energy are still under development in Bolivia, in which one of the targets is to provide 183 MW from 237 

renewables by 2025 [10]. In Guatemala and Colombia bagasse could attend 16% and 7% of the national supply in 238 

long-term scenario, respectively. Significant potential to Nicaragua as well (Fig. 3).  239 

 240 

<< Figure 2 here >> 241 

 242 

Fig. 2 . Potential electricity generation. New Framework scenario considers a projection in the electricity consumption. MC = 243 
Mature Context scenario. NF = New Framework scenario.  244 

 245 
 246 
<< Figure 3 here >> 247 

Fig. 3. Potential contribution of sugarcane bagasse on electricity generation. 248 

 249 

3.3. GHG emissions implication 250 

We found relevant potential on reducing the national carbon emissions specially in Bolivia, Paraguay and 251 

Nicaragua, (Fig. 4). GHG emission savings from replacing gasoline and diesel and promoting a cleaner electricity 252 

generation would be 18% in Bolivia (2.6 Mt CO2e); larger contribution from diesel displacement. Paraguay savings 253 

correspond to 15% of the 2012 fossil fuels emissions – about 1.2 Mt CO2e, especially from diesel displacement – 254 

despite the increasing on carbon emissions from electricity generation justified by the hydropower contribution. 255 

Nicaragua can reduce 14% (0.9 Mt CO2e) by implementing NF scenario. The electricity generation in Cuba is 256 

mainly from fossil fuel, which justifies the significant potential of bagasse on improving the power mix. Argentina 257 

and Mexico present the larger potential in absolute values, able to avoid 11.5 and 12.5 Mt CO2e in 2030 compared 258 

with 2012, respectively. By applying the NF scenario, Argentina can accomplish over 10% of its pledge announced 259 

at the COP21 [56].  260 

 261 

  262 
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 263 
<< Figure 4 here >> 264 

Fig. 4. Potential GHG emission savings due to gasoline, diesel and electricity displacement. Graphs split for better visualization. 265 
a, smaller-scale graph. b, larger-scale graph. Red markers correspond to the relative GHG emission savings compared with the 266 
fossil fuel emissions (2012 baseline; considering carbon emissions attributed to the goods and services consumed in the 267 
country discounted from emissions from cement manufacture. Data [57,58,39] were retrieved from the Global Carbon Atlas 268 
http://www.globalcarbonatlas.org/?q=en/emissions  [59]).  269 

3.4. Investments 270 

The total capital required to implement the NF scenario in all LAC countries, including the sugarcane 271 

cropping and about 230 mills, would be around USD 35 billion (Table 7), which represents around the same 272 

investment in renewable energy in LAC from 2012 to 2014, excluding Brazil [60]. Argentina and Mexico would each 273 

spend around USD 9 billion to implement about 60 new industries. In most of the LAC countries, such investment 274 

over 10 years would represent less than 1% of the national investment in fixed capital (Table 7). Although Mexico 275 

would require an investment four times higher than that applied on renewable energy in 2014, cleaner energy 276 

projects have increased in the past years in this country [60]. With around USD 2 billion (16 new plants), Bolivia 277 

would displace 20% of gasoline and diesel, besides producing surplus ethanol. Such capital represents about 3% 278 

of the total investment (gross fixed capital formation, Table 7) in this country in 2014, which could pose barrier to 279 

implement the NF scenario. This condition, however, could be overcome by using foreign investments [61].  280 

Colombia targets 6.5% of renewable energy on electricity generation by 2020, excluding large hydropower 281 

[10]. By investing on 35 new 1Mt-sugarcane mills, bagasse would supply 6% of the Colombian demand. Nicaragua 282 

can replace 20% of the gasoline and 16% of the diesel by investing USD 464 million in only three new sugarcane 283 

mills. This investment represents 10% of the country plans in renewable energy over the next 15 years, although 284 

biomass has not been included in the framework [62]. Currently, there is no ethanol blending mandate in Nicaragua 285 

(Table 1) and the country imports about 50% of its gasoline consumption [1], confirming the opportunity for ethanol 286 

as alternative fuel. In addition to biofuels, sugarcane bagasse can afford 15% of the electricity demand in 287 

Nicaragua in 2030. This country has established a goal of generating 90% of its electricity from renewable sources 288 

by 2027 [63]. Paraguay can attend the NF scenario by investing USD 1 billion, 2.5% of its investment in fixed 289 

capital in 2014. The capital required for Costa Rica and Panama to replace at least 5% of the gasoline (one single 290 

sugarcane plant) correspond to 25% of their total investment on renewable energy in 2014 [60]. With an investment 291 

of USD 3.5 billion, which correspond to less than 1% of the gross investment in fixed capital, Peru displace at least 292 

20% of gasoline and 10% of diesel. Currently, the blending mandate of ethanol in Peru, which is also produced 293 

from sugarcane, is 7.8% [10] and, despite of the high biomass potential, hydro and gas contribute to over 90% of 294 

the electricity generation (Table 6). 295 

 296 
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Table 7. 297 
Number of new 1Mt-sugarcane mills and total investment for New Framework scenario. 298 

Countries Number of mills a 
 

Total investment 
[MUS$] b 

Investment related to 
GDP at market price 
[%] c 

Investment related to 
gross fixed capital 
formation [%] d 

Argentina 64 9,368 0.2% 1.1% 
Bolivia 16 2,355 0.7% 3.4% 
Colombia 35 5,206 0.1% 0.5% 
Costa Rica 1 136 0.0% 0.1% 
Cuba 1 152 0.02% 0.3% 
Dominican Republic 1 85 0.01% 0.1% 
Ecuador 4 576 0.1% 0.2% 
El Salvador 1 81 0.0% 0.2% 
Guatemala 2 273 0.0% 0.3% 
Honduras 1 215 0.1% 0.5% 
Mexico 59 8,652 0.1% 0.3% 
Nicaragua 3 464 0.4% 1.4% 
Panama 1 151 0.0% 0.1% 
Paraguay 8 1,206 0.4% 2.5% 
Peru 24 3,538 0.2% 0.7% 
Venezuela 12 1,833 0.0% 0.2% 
Total 233 34,309   
 a Crushing capacity: 106 t/year. b 2014 current price; R$ 2.35 = US$ 1.00. Include sugarcane field (soil preparation, planting and 299 
cultural treatment; average value for the sugarcane expansion region in Brazil) [49] and industrial sector (mill and cogeneration 300 
system) [48]. c Considering that the total investment will occur over 10 years. Related to 2014 current price. d Related to 301 
investment in fixed capital.  302 

4. Conclusions and policy implications 303 

This study confirms the large energy potential of the sugarcane in Latin America & Caribbean. Just a slight 304 

share of pasture areas and minor investment may be enough to significantly displace fossil fuel, enlarge the 305 

electricity access, reduce the external dependency on fuel imports and mitigate the GHG emissions in the energy 306 

sector. These results are achieved by using the most traditional technology to produce ethanol (i.e., first 307 

generation). Once 2G ethanol is fully developed and economically feasible, it could certainly improve the 308 

opportunities for LAC countries. The competition between bioelectricity and 2G ethanol, however, requires a 309 

strategic investigation to identify the optimal allocation for bagasse use [64]. Other sources for electricity production, 310 

such as sugarcane straw, can also increase the electricity supply. Nevertheless, many benefits to the soil functions 311 

are associated to the straw left on the ground, and thus the amount of straw that can be harvested without 312 

impacting the crop production is still unclear [65,66].  313 

Yet, investments on sugarcane sector, and especially on bioenergy, depend on stable policies and long-term 314 

contracts [67], such as international agreements on carbon emission mitigation. Also, optimize the use of the 315 

coproducts must be a priority to make the investment feasible. For instance, producing electricity from bagasse 316 

makes sense once it is a residue from the sugarcane mill – thus low-cost source –, and can attend the industry 317 

demand and moreover offer surplus electricity.  318 
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Despite appropriate policies, opportunity costs and competitive prices are also key issues to put in place 319 

such strategy. Opportunity costs are related to the alternative to produce sugar instead of ethanol. The international 320 

market for sugar and derivatives and the price parity between ethanol and gasoline will drive the decision with 321 

regard the use of sugarcane for ethanol production and the replacement of fossil fuel by the biofuel. The price of 322 

ethanol must be competitive with the gasoline one. Under some policies and incentives to enlarge the use of 323 

ethanol with more aggressive blending mandate, the biofuel production can be more attractive and overcome any 324 

distortion in the price parity or opportunity costs. However, such engagement must be consistent with the car 325 

manufacturers in order to adequate the vehicles for higher blends (greater than E10), whose feasibility has been 326 

proven by the Brazilian experience. In case of surplus ethanol, there is also opportunity for exports. 327 

In closing, significant growth is expected for biomass power generation and biofuels in the next few years 328 

and LAC region can play an important role on promoting modern energy and supplying international demand. 329 

Moreover, our study shows the opportunity to improve the countries’ energy security as long as appropriate 330 

conditions are built in the energy and agricultural fields. 331 
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Figure 4a
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Figure 4b



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

 
• Sugarcane offers a large potential as renewable energy 
• Sugarcane ethanol can reduce the fossil fuel imports in LAC countries 
• Bagasse can contribute to enlarge the electricity access 
• Sugarcane can promote the GHG emission savings 
• Appropriate policy is key issue to put in place such strategy 

 


