

Assessment of Different Biofuels Production Chain Alternatives Using the Virtual Sugarcane Biorefinery

Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE Centro Nacional de Pesquisa em Energia e Materiais - CNPEM

August 2014

Virtual Sugarcane Biorefinery

CanaSoft

Straw recovery systems

integral harvesting system

baling system

Straw recovery systems

Straw recovery systems

Introduction of mechanization

(in Center-South region)

observed sugarcane agricultural yields

Source: IDEA

Controlled Traffic Structure - ETC

(harvesting and planting)

conventional tillage

reduced tillage

Economic assessment of ETC

Biorefinery simulation

Process steps (depending on each scenario)

1G annexed plant

1G – technical parameters

parameter	base	optimized
boiler pressure	22 bar	90 bar
surplus bagasse	sold	fuel
surplus electricity	no	yes
drivers	direct	electric
use of straw (50%)	no	yes
steam consumption	value from simulation	20 % reduction

per tonne of sugarcane:

* Hydrated ethanol

Economic assessment

Source: Cavalett et al., 2011. Environmental and economic assessment of bioethanol, sugar and bioelectricity production from sugarcane. Chemical Engineering Transactions

Environmental assessment

(per L of ethanol)

Source: Cavalett et al., 2012. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Techn Environ Policy

Environmental impacts

(global warming potential in CO_{2eq} per L of 1G ethanol)

Source: Cavalett et al., 2012. Environmental and economic assessment of sugarcane first generation biorefineries in Brazil. Clean Techn Environ Policy

Validation of VSB

Processing capacity: 3 million tons of sugarcane/year **Products:** crystal sugar, anhydrous and hydrated ethanol and power cogeneration

Validation Results

Main streams

Product	Unit	Bulletin	Aspen	Deviation	Yield (TRS based)	Bulletin	Aspen	Deviation
Sugar	t/h	64.44	66.15	2.6%	Total	89.9%	91.3%	1.5%
Hydrated ethanol	m³/h	15.46	15.59	0.88%	Sugar House	91.5%	93.8%	2.5%
Anhydrous ethanol	m³/h	25.03	24.88	-0.63%	Distillery	86.6%	87.1%	0.62%

Validation of process parameters and simulation

results with differences lower than 5%

Validating 1G increases confidence in methodology and process considerations to evaluate other routes/technologies

Integrated 1G and 2G ethanol production

Laboratório Nacional de Ciência e Tecnologia do Bioetanol

Technical results of 2G ethanol

Dias et al., 2012. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology

Economic assessment of 2G ethanol

Dias et al., 2012. Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology

Flexibility ethanol 2G vs electricity

Source: Dias et al., 2013. Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy

Environmental impacts 2G ethanol

Technological Assessment Team for LACAf-1.3 Project

Antonio Bonomi Tassia Junqueira Vera Gouveia Mateus Chagas Otávio Cavalett Marcos Watanabe Post-doctoral fellow Coordination Simulation of scenarios Simulation of scenarios Agricultural Model Environmental impacts Economic evaluation Simulation of scenarios

Obrigado!!

antonio.bonomi@bioetanol.org.br