Table of Contents – SCOPE Bioenergy and Sustainability

Section Ii
Forewordiii
SCOPE Bioenergy & Sustainability Contributorsv
Acknowledgmentsxi
Section II - Summaries3
Executive Summary4
1.  Technical Summary8
1.1  Introduction12
1.2  Sustainable Development and Innovation13
1.3  Global Climate Change14
1.4  Planning the Expansion of Bioenergy15
1.4.1  Integrated Policy to Maximize Bioenergy Benefits and Positive Synergies17
1.4.2  Sustainable and Reliable Biomass Supply20
1.4.3  Developing Sustainable Biorefinery Systems21
1.4.4  Bioenergy Governance23
1.4.5  Bioenergy Certification and Social Aspects24
1.4.6  Financing the Bioenergy Effort24
1.4.7  Bioenergy Trade Expansion25
1.5  Conclusions25
2.  Bioenergy Numbers28
2.1  Introduction29
2.2  Bioenergy Production Now29
2.2.1  Current Feedstocks30
2.2.2  Current Land Use33
2.2.3  Current Conversion Technologies33
2.2.3.1  Conventional Ethanol33
2.2.3.2  Ethanol and Flexible Fuel Vehicle Engines35
2.2.3.3  Biodiesel35
2.2.3.4  Biodiesel Vehicle Engines36
2.2.3.5  Lignocellulosic Ethanol 36
2.2.3.6  Aviation Biofuels37
2.2.3.7  Renewable Diesel37
2.2.3.8  Bioelectricity37
2.2.3.9  Biogas38
2.2.3.10  Biogas Vehicles40
2.2.3.11  Heat40
2.2.4  Emissions40
2.3  Bioenergy Expansion42
2.3.1  Land Availability42
2.3.2  Biomass Production Potential44
2.3.3  Bioenergy Costs46
2.3.4  Biomass Supply in the Face of Climate Change47
2.3.5  Impacts of Bioenergy Expansion on Biodiversity and Ecosystems47
2.3.6  Indirect Effects49
2.3.7  Financing49
2.3.8  Trade50
2.4  Bioenergy Added Benefits to Social and Environmental Development50
2.4.1  Biomass Carbon Capture and Sequestration50
2.4.2  Improvement of Soil Quality52
2.4.3  Increasing Soil Carbon53
2.4.4  Pollution Reduction55
2.4.5  Social Benefits55
Section III - Synthesis Chapters59
3.   Energy Security60
Highlights61
3.1  Introduction62
3.2  Key Findings62
3.2.1  Understanding Energy Security and Bioenergy62
3.2.1.1  Availability and Markets64
3.2.1.2  Access and Energy Security66
3.2.1.3  Usability and Processing66
3.2.1.4  Stability and Storage68
3.2.2  Interconnectivity with Key Goals and Policies69
3.2.2.1  The Food and Security Nexus71
3.2.2.2  Economics, Markets and Investment 73
3.2.3  Bioenergy Technology Related Energy Security Issues74
3.2.4  Geopolitics of Bioenergy and Energy Security76
3.2.5  Local Issues79
3.2.5.1  Lifeline Energy Needs79
3.2.5.2  Pollution80
3.2.5.3  Water Use80
3.2.5.4  Economics, Jobs and Livelihoods81
3.2.5.5  Women and Children, Education and Development82
3.2.5.6  Health Impacts82
3.2.5.7  Co-Benefits and Tradeoffs82
3.2.5.8  Research Needs and Sustainability83
3.3  Conclusions and Recommendations83
3.4  The Much Needed Science84
3.4.1  Availability of Sustainable Biomass85
3.4.2  Conversion Technologies85
3.4.3  Needed Science for Bioenergy to Achieve Maximum Benefit to Energy Security86
Acknowledgments86
Literature Cited87
4.  Bioenergy and Food Security90
Highlights91
Summary91
4.1  Introduction93
4.1.1  Relevance93
4.1.2  What is Food Security?97
4.1.3  Ethical Principles97
4.1.4  What has changed? - Emerging Evidence on Bioenergy and Food Security99
4.1.5  Background and Preconditions101
4.2  Key Findings102
4.2.1  Food Security, Bioenergy, Land Availability and Biomass Resources102
4.2.1.1  Increasing Crop Production versus Increased Demand for Primary Foodstuffs102
4.2.1.2  Global Change 105
4.2.1.3  Land and Water Availability106
4.2.2  Interplay between Bioenergy and Food Security107
4.2.2.1  Analysis of Food Security in the Bioenergy Context107
4.2.2.2  Availability109
4.2.2.3  Access109
4.2.2.4  Utilization110
4.2.2.5  Stability and Resilience110
4.2.3  Causal Linkages: Bioenergy, Rural Agricultural Development and Food Security112
4.2.4  Governance116
4.2.4.1  Introduction116
4.2.4.2  Implementation, Scale and Resource Ownership in Relation to Food Security118
4.3  Conclusions120
4.4  Recommendations for Research, Capacity Building, Communication and Policy Making124
4.5  The Much Needed Science127
4.5.1  Farming practice and management in relation to food security127
4.5.2  Food security indicators and monitoring127
4.5.3  Governance including regulations, local and global policies and certification129
4.5.4  Finance and investment models129
4.5.5  Communication and mutual learning129
Acknowledgments130
Literature Cited130
5.  Environmental and Climate Security138
Highlights139
Summary140
5.1  Introduction143
5.1.1  Security is Important143
5.1.2  Key Opportunities and Challenges144
5.2  Key Aspects145
5.2.1  Climate Change145
5.2.2  Land Use Change (LUC)146
5.2.3  Ecosystem Change 149
5.2.3.1  Agricultural, Forest and Grassland Landscapes149
5.2.3.2  Coastal Areas150
5.2.3.3  Marginal and Degraded Lands151
5.3  Environmental Security153
5.3.1  Biodiversity Related Impacts154
5.3.2  Water Supply and Quality Impacts156
5.3.2.1  Impacts on Water Resource Abundance156
5.3.2.2  Impacts on Water Quality158
5.3.2.3  Selecting Watershed Appropriate Bioenergy Systems159
5.3.3  Soil Quality and Nutrient Cycling Impacts159
5.4  Climate Security164
5.5  Governance and Policy Guidelines168
5.5.1  Underlying Causes of Deforestation169
5.5.2  Guidelines for Social and Environmental Factors – Biodiversity, Water170
5.6  Conclusions171
5.7  Recommendations171
5.8  The Much Needed Science175
Literature Cited175
6.  Sustainable Development and Innovation184
Highlights185
Summary185
Examples of Innovative and Integrated Bioenergy Systems186
6.1  Introduction187
6.2  Bioenergy Systems: the Innovation Perspective190
6.2.1  Innovation and Biofuels192
6.2.2  Innovative Tools and Methodology Issues192
6.2.3  Bioenergy and Food Security: an Innovative Approach196
6.3  Need for Increased Capacity in Data Gathering and Analysis197
6.4  Capacity Building and Sustainable Bioenergy201
6.5  Need for Flexible Financial Models202
6.6  Relevance of Consultation and Communication 206
6.6.1  Public Participation - An Overview206
6.6.2  Key Principles of Stakeholder Engagement207
6.6.3  Stakeholder Participation in the Bioenergy Sector208
6.6.4  Public Perception and Communicating Good Practices210
6.7  Final Remarks211
6.8  Recommendations212
6.9  The Much Needed Science214
Literature Cited214
7.  The Much Needed Science: Filling the Gaps for Sustainable Bioenergy Expansion218
Integration of Sciences for Bioenergy to Achieve its Maximum Benefits219
7.1  Policy221
7.2  Sustainable Biomass Supply222
7.3  Feedstocks223
7.4  Logistics224
7.5  Technologies225
7.6  Exploring Social and Environmental Benefits226
Section IV - Background Chapters229
8.  Perspectives on Bioenergy230
Highlights231
Summary231
8.1  Introduction232
8.2  The Upward Trajectory of Biofuels233
8.3  Low-Carbon Heat and Power244
8.4  The Unrealized Potential of Biogas245
8.5  Cellulosic Biofuels Have Arrived246
8.6  Diesel and Jet-fuel from Sugars247
8.7  Biofuels Done Right248
8.8  Abundant Idle Land for Bioenergy Production249
8.9  Bioenergy Risks and Tradeoffs251
Acknowledgments 253
Literature Cited253
9.  Land and Bioenergy258
Highlights259
Summary260
9.1  Introduction260
9.2  Key Findings262
9.2.1  Global Land Availability and Projected Demand for Food, Fiber and Infrastructure262
9.2.1.1  Land Demand262
9.2.1.2  Current Land Demand for Bioenergy264
9.2.1.3  Land Availability266
9.2.2  Illustrative Example: Brazilian Land Use and Potential Availability271
9.2.3  Land Use Intensities for Bioenergy Supply275
9.2.3.1  Biofuels275
9.2.3.2  Bioelectricity276
9.2.3.3  Bio-Heat276
9.2.4  Dynamics of Bioenergy Supply279
9.2.5  Biomass Energy Supply: The Answer Depends on How the Question Is Framed282
9.2.5.1  Residual Biomass Arising from Non-Bioenergy Activities283
9.2.5.2  Separate Analysis of Food and Bioenergy Production Systems284
9.2.6  Integrated Analysis of Food and Bioenergy Production Systems285
9.2.6.1  Sustainable Intensification286
9.2.7  Estimates of Bioenergy Potential288
9.3  Discussion and Conclusions289
9.4.  Recommendations293
9.5.  The Much Needed Science294
Literature Cited295
10.  Feedstocks for Biofuels and Bioenergy302
Highlights303
Summary304
10.1  Introduction306
10.2  Maize and Other Grains 308
10.3  Sugarcane314
10.4  Perennial Grasses318
10.5  Agave322
10.6  Oil Crops324
10.7  Forests and Short Rotation Coppice (SRC)327
10.8  Algae331
10.9  Conclusions335
10.10  Recommendations and Much Needed Science336
Literature Cited337
11.  Feedstock Supply Chains348
Highlights349
Summary350
11.1  Introduction350
11.2  Key Features of Biomass Supply Chains351
11.3  Biomass Crops and their Supply Chains352
11.4  Typical Layout of the Biomass Supply Chains353
11.4.1  Harvesting and Collection353
11.4.2  Transportation354
11.4.3  Storage355
11.4.4  Pretreatment356
11.5  Challenges, Best Practices and Key Lessons in Biomass Supply Chains357
11.6  Case Studies of Biomass Supply Chains358
11.6.1  Sugarcane358
11.6.2  Eucalyptus361
11.6.3  Elephant Grass/Miscanthus362
11.6.4  Palm Oil363
11.7  Concluding Remarks364
11.8  Recommendations365
11.9  The Much Needed Science366
Literature Cited367
12.  Conversion Technologies for Biofuels and Their Use374
Highlights375
Summary378
12.1  Introduction381
12.1.1  Environmental and Sustainability Context383
12.1.2  Technology Development and Deployment Context390
12.2  Key Findings394
12.2.1  Biofuels and Sustainability Are Systems Dependent: Scale, Nature and Location397
12.2.1.1  Ethanol403
12.2.1.1.1  Maize and Other Grains—Dry Mill Corn Refining Industry Emerged for Ethanol, Feed, and Biodiesel404
12.2.1.1.2  Sugarcane Biorefineries Make Ethanol, Sugar, and Power the Grid (mostly based on Walter et al. 2014)405
12.2.1.1.3  Scale—Large and Larger, with Small-Scale Ethanol Production Evolving407
12.2.1.1.4  Lignocellulosic Ethanol Using Bioconversion Processes in Biorefineries408
12.2.1.2  Other Alcohols, Fuel Precursors, and Hydrocarbons from Biochemical Processing413
12.2.1.3  Biodiesel—Chemical Processing of Plant Oils or Fats Matures—Small and Large Plants416
12.2.1.4  Renewable Diesel—Hybrid Chemical and Thermochemical Processing from Plant Oils or Fats to Hydrocarbons417
12.2.1.5  Hydrocarbons, Alcohols, Ethers, Chemicals, and Power from Biomass and Waste Gasification—Flexible Biorefineries to Multiple Products417
12.2.1.5.1  Catalytic Upgrading of Syngas—Commercial and Developing Processes—Could Lead to CO2 Capture and Storage418
12.2.1.5.2  Bioprocessing Upgrading—Hybrid Processing421
12.2.1.6  Liquid Fuels from Biomass Pyrolysis—Multiple Scales for Centralized and Decentralized Production of Bio-Oils and Upgrading422
12.2.1.7  Biofuels from Forest Products and Pulp and Paper Biorefineries—Old and New425
12.2.1.8  The Commercialization of Advanced Biofuels and Biorefineries426
12.2.1.8.1  Partnerships Created Across the Globe Demonstrate Multiple Technically Feasible Options for Advanced Biofuels and Many Types of Biorefineries427
12.2.1.8.2  Estimated Production Costs of the Porfolios of Advanced Technologies 429
12.2.2  Biofuels Utilization in Transport431
12.2.2.1  Ethanol Use Increased431
12.2.2.1.1  Low and Mid-level Blends Used in More Than Fifty Countries432
12.2.2.1.2  Straight Ethanol and Flexible Fuel Vehicles in Brazil, U.S., and Sweden435
12.2.2.2  Other Alcohols Are Less Volatile but Have Lower Octane Numbers435
12.2.2.3  Biodiesel Is Blended with Diesel, Some Infrastructure and Distribution Issues437
12.2.2.4  Biomass-Derived Hydrocarbon Fuels Reach a Larger Fraction of the Barrel of Oil438
12.2.2.4.1  Hydrotreated Vegetable Oils or Renewable Diesel is a Hydrocarbon and Can Come from Many Feedstocks438
12.2.2.4.2  Developing Bio-Jet Fuels Need a High Density Low Carbon Fuel439
12.3  Conclusions440
12.4  Recommendations for Research, Capacity Building, and Policy Making444
Capacity building recommendations445
Policy recommendations445
Acknowledgments446
Literature Cited446
Notes461
13.  Agriculture and Forestry Integration468
Highlights469
Summary469
13.1  Introduction469
13.2  Forestry/Agriculture Interface470
13.3  New Paradigms in Ecological Land Management472
13.3.1  High Productivity Polyculture Systems473
13.3.2  High Productivity Monoculture Systems475
13.3.3  The Green Economy476
13.4  Integrated Landscape and Bioenergy System Design479
13.5  Integrated Natural Forests, Planted Forests, Agroforestry, and Restored and Artificial Prairie Systems as Sources of Biomass - Potentials and Challenges480
13.6  Conclusions and Policy Recommendations482
13.7  Recommendations483
13.8  The Much Needed Science484
Acknowledgments485
Literature Cited485
14.  Case Studies490
Highlights491
Summary492
14.1  Introduction493
14.2  Key Findings494
14.2.1  The Brazilian Experience with Sugarcane Ethanol494
14.2.2  Surplus Power Generation in Sugar/Ethanol Mills: Cases in Brazil and Mauritius497
14.2.3 The African Experience503
14.2.4  The Asia Experience506
14.2.5  Biofuels from Agricultural Residues: Assessing Sustainability in the USA Case512
14.2.6  Comparison of Biogas Production in Germany, California and the United Kingdom514
14.2.7  Wood Pellets and Municipal Solid Waste Power in Scandinavia518
14.3  Overall Conclusions520
14.4  Recommendations521
14.5  The Much Needed Science522
Literature Cited522
15.  Social Considerations528
Highlights529
Summary529
15.1  Introduction530
15.2  Review of Legal Frameworks and Social Considerations in Bioenergy Production around the World532
15.3  Land, Water and Natural Resources 535
15.4  Employment, Rural Opportunities and Livelihood Impacts536
15.5  Skills and Training537
15.6  Poverty, Health and Food Production538
15.7  Land Rights, Gender and Vulnerable Groups540
15.8  Societal Perception, Corporate Sustainability Reporting and Monitoring542
15.9  Conclusions and Recommendations543
15.10  The Much Needed Science544
Literature Cited545
16.  Biofuel Impacts on Biodiversity and Ecosystem Services554
Highlights555
Summary556
16.1  Introduction556
16.2  Key Findings557
16.2.1  Identification and Conservation of Priority Biodiversity Areas are Paramount557
16.2.1.1  Effects of Feedstock Production on Biodiversity and Ecosystem Services are Context Specific558
16.2.1.2  Location-Specific Management of Feedstock Production Systems should be Implemented to Maintain Biodiversity and Ecosystem Services560
16.2.2  Biofuel Feedstock Production Interactions with Biodiversity560
16.2.2.1  Impacts of Land-Use Change and Production Intensification560
16.2.2.2  Invasion of Exotic Species introduced through Biofuel Production Activities565
16.2.3  Ecosystem Services and Biofuel Feedstock Production565
16.2.4  Mitigating Impacts of Biofuel Production on Biodiversity and Ecosystem Services565
16.2.4.1  Zoning569
16.2.4.2  Wildlife Friendly Management Practices569
16.2.4.3  Biodiversity and Environmental Monitoring570
16.3  Conclusions570
16.4  Recommendations 571
Acknowledgments571
Literature Cited571
17.  Greenhouse Gas Emissions from Bioenergy582
Highlights583
Summary583
17.1  Introduction584
17.2  Key Findings585
17.2.1  Life Cycle Assessments of GHG Emissions from Biofuels585
17.2.1.1  LCA Issues in GHG Emissions585
17.2.1.2  LCA Results of Greenhouse Gas Emissions for Biofuels587
17.2.1.2.1  LCA Results for Commercial Liquid Biofuels588
17.2.1.2.2  LCA Results for Solid Biofuels592
17.2.2  Land Use Changes and GHG Emissions594
17.2.2.1  Models Results: iLUC Factors595
17.2.2.2  Biofuels iLUC598
17.2.2.3  Translating Land Use Changes into GHG Emissions599
17.2.2.4  Options for Mitigating iLUC from a Policy Making Perspective601
17.2.3  Bioenergy Systems, Timing of GHG Emissions and Removals,and non-GHG Climate Change Effects602
17.2.4  Funding Innovation: Data Needed to Support Policies and Strategic Decisions603
17.3 Conclusions606
17.4 Recommendations608
17.5 The Much Needed Science608
Literature Cited609
18.  Soils and Water618
Highlights619
Summary619
18.1  Introduction621
18.1.1  Interconnectivity of Water and Soil621
18.1.2  Metrics622
18.2  Water Impacts of Modern Bioenergy 626
18.2.1 Water Impacts Current and Novel feedstocks627
18.2.1.1  Annual Bioenergy Crops627
18.2.1.2  Perennial and Semi-Perennial Crops627
18.2.1.3  Forest Biomass in Long Rotation628
18.2.1.4  Organic Waste and Residues628
18.2.1.5  Algae628
18.2.2  Water Impacts of Conversion Technologies629
18.3  Soil Impacts of Modern Bioenergy630
18.3.1  Soil Impacts of Current and Novel Feedstocks630
18.3.1.1  Annual Bioenergy Crops631
18.3.1.2  Perennial and Semi-Perennial Crops631
18.3.1.3  Forest Biomass in Long Rotation631
18.3.1.4  Waste Biomass632
18.3.2  Phytoremediation and Recovery of Marginal Soils633
18.4  Anticipating Changes Associated with Expansion of Bioenergy Production633
18.4.1  Effects of Land Cover Change633
18.4.1.1  Effects of Land Cover Change on Water634
18.4.1.2  Effects of Land Cover Change on Soils638
18.4.2  Effects of Changes in Residue Management and Irrigation Use and Practice638
18.4.2.1  Effects of Changes in Residue Management638
18.4.2.2  Effects of Changes in Irrigation Use and Practice639
18.5  Minimizing Impact of Bioenergy Production640
18.5.1  Selecting Appropriate Bioenergy Systems for Ecosystems640
18.5.2  Landscape-Level Planning and Mixed Systems641
18.5.3  Evolution in Best Management Practices641
18.5.4  Using Wastes in Bioenergy Systems to Improve Water and Soil Quality, Close the Nutrient Cycle, and Recover Energy642
18.5.4.1  Fertirrigation642
18.5.4.2  Municipal Solid Waste and Wastewater Digestion (Biogas)644
18.5.4.3  Ash and Biochar645
18.6  Policy and Governance645
18.7  Conclusions 646
18.8  Recommendations647
18.9  The Much Needed Science648
Literature Cited649
19.  Sustainability Certification660
Summary661
19.1  Introduction661
19.2  The Rationale for Sustainability Certification and Baseline Sustainability Principles664
19.2.1  Regulatory Motivations For Certification664
19.2.2  Types of Sustainability Certifications665
19.2.2.1  Forest Certification Systems665
19.2.2.2  Agricultural Certification Systems666
19.2.2.3  Biofuel/Bioliquids Certification Systems666
19.2.2.4  Wood Pellet Certification Systems666
19.2.2.5  Summary of Environmental and Social Indicators667
19.3  Implementation Challenges for Bioenergy Certification Standards668
19.3.1  Biodiversity Measurement and Protection668
19.3.2  Water Quality670
19.3.3  "Shed" Level Sustainability Assessments670
19.3.4  Forest Carbon Accounting671
19.4  Accounting for “Indirect” Effects672
19.5  Standards Governance and Social Sustainability672
19.6  The Efficacy of and Challenges to International Harmonization675
19.7  Conclusions675
19.8  Highlights and Recommendations677
19.9  The Much Needed Science678
Literature Cited678
20.  Bioenergy Economics and Policies682
Highlights683
Summary683
20.1  Introduction 683
20.2  Key Findings685
20.2.1  Economic Developments in the Bioenergy Market685
20.2.2  Bioenergy Policies are a Key Driver688
20.2.3  Analyses Framework of Bioenergy within the Emerging Bioeconomy690
20.2.4  Arguments for Policy Interventions694
20.2.5  Economic Impact of Government Policies699
20.3  Conclusion702
20.4  Recommendations (Policy)703
20.5  The Much Needed Science704
Literature Cited704
21.  Biomass Resources, Energy Access and Poverty Reduction710
Highlights711
Summary711
21.1  Introduction711
21.2  Poverty, Inequality and Poverty Reduction712
21.3  Bioenergy and Poverty Reduction. International Programs717
21.4  Technologies: Biogas, Cooking Stoves, Minigrids719
21.5  Energy Access and Rural Development: the Role of Modern Bioenergy721
21.6  Case Studies: Improved Cookstoves for Energy Access, the EnDev Program in Kenya723
21.7  Cross Sector-Synergies: Including Investment and Institutions725
21.8  Conclusions and Recommendations725
21.9  The Much Needed Science726
Literature Cited726
Section V731
Countries and regions cited in SCOPE Bioenergy & Sustainability733
SCOPE Bioenergy & Sustainability Keywords734